On Digital Images Which Cannot be Generated by
Small Generalised Stochastic Automata

Bruce Litow and Olivier de Vel

Abstract

It is known, chiefly through the work of Culik and Kari that generalised stochastic
automata (GSA) can be used to compress digital (pixel) images. A theoretical account
of GSA-based image compression has not been carried out. This paper contributes to
such an account by exhibiting a family of images such that a member image having
S pixels cannot be generated by a generalised stochastic automaton having fewer than
approximately $1/2 states. This lower bound on the number of states holds even when
a certain type of loss is permitted. These images are deterministically defined and are
based on work of Ablayev.

1 Introduction

Culik and Kari were the first to observe that digital images could be generated by generalised
stochastic automata (GSA), and that in some cases lossy compression of an image could be
obtained by regarding a GSA as a representation for the image that it ‘nearly’ reproduces.
Culik and Kari used the term weighted finite automaton (WFA), rather than than GSA, but
the two terms have the same meaning. GSA have long been studied in connection with formal
languages and probabilistic computation, so it seems to be a good idea to retain the term in
order to facilitate references to an extensive literature. This paper, and a companion [6] are
examples of how the GSA literature can be applied to the study of image compression by GSA.

A number of papers, largely experimental in nature have shown that GSA can yield large
compression ratios for some images while incurring acceptable loss. For example, see Hafner
[5] or Litow and de Vel [7]. However, principled accounts of the range of applicability of GSA
for image compression, and of the quantitative relationship between compression ratio and loss
have not yet been carried out. Typical of the experimental data that is presented on behalf of
GSA as an image compression method is the following graph.
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Figure 1: Root mean-square error versus compressibility

The three GSA-based techniques, due to Culik and Kari [4], Hafner [5] and de Vel and Litow [7]
are compared to the JPEG standard. Only one test image (‘Lena’) at resolution 8 was used and
the loss measure is the Euclidean vector norm. The threshold phenomenon at high compression
ratios (low bits-per-pixel) which may indicate serious deterioration of image recognisability has
not been carefully analysed.

A preliminary analysis of some of the basic questions concerning how well GSA perform in
compression is given in [6], but many questions remain. The object of this paper is to continue
the theoretical analysis by exhibiting a family of images which cannot be generated by small
GSA. More precisely, we show that an image in this family consisting of S pixels cannot be
generated by a GSA with fewer than approximately S'/? states. This lower bound holds even
under certain types of loss. The image structure that forces a large number of states is entirely
deterministic and is adapted from work by Ablayev [1, 2, 3].

We work with two-dimensional digital images, but our method applies to any finite number of
dimensions. Let ¢ and n be positive integers. A (¢,n)-image P is a formal polynomial in four

noncommuting variables 0,1, 2,3 (often called quadtree coordinates in computer graphics) and
with coefficients from the set {0,1/29,2/27,...,1 —1/29,1}. One can write P as

P = Z Ly = W

we{0,1,2,3}7

The monomial ., - w tells us the pixel location in quadtree coordinates at resolution n, i.e.,
the string w € {0,1,2,3}", and the pixel value (generalised grey-scale) p,, € {0,1/29,...,1 —
1/29,1}. We refer to ¢ as the pixel quantisation level. The formal polynomial approach makes
connection with language theory entirely natural. In particular, a (0,n)-image, i.e., bi-level,
can be identified with the subset of monomials w such that p,, = 1.

Readers who are unfamiliar with quadtree coordinates may find the following picture and brief
explanation helpful.
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Figure 2: Pixel at resolution two and location 10



The correspondence between quadtree coordinates and Cartesian coordinates is given by the
following rule. Let aya5-- -z, be a resolution n pixel. Write x; = y; -2+ z;, where y;, z; € {0,1}.
The binary string y1ys - - - 4, is the binary representation of an integer, say, Y, and z;--- 2, is
the representation of an integer Z. It is the case that (Y, Z) is the Cartesian coordinate of the
lower left-hand corner of the pixel #q---x,. This is particularly transparent for the quadtree
symbols themselves.

The paper is organised as follows. Section 2 contains definitions and results about GSAs.
Section 3 contains a discussion of Ablayev’s method and its adaptation to images. Section 4
contains the statement and proof of our main result, Theorem 2. Section 5 discusses whether
or not Theorem 2 poses a fundamental limitation on image compression achievable by GSA.

2 GSA theory

We carry through our discussion of basic notion from GSA theory for the quadtree alphabet,
but the theory generalises to any finite alphabet. A generalised stochastic automaton (GSA)
Fis a tuple of the form F = (u,v, My, My, M3, Ms).

e uis a l x g rational matrix. (row vector)
e visag x 1 matrix all of whose entries are in {0,1}. (column vector)
o My, My, My, M3 are g x ¢ rational matrices.
The value F' assigns to the pixel with coordinates wy - - - w,,, where w; € {0,1,2,3} is given by
u-My, - M, -v.

We let F'(w) designate this value. The value of ¢ is the number of states in the GSA.

For image generation, the definition of GSA is modified in that one restricts u to being a 0, 1-
matrix, and the entries of v reflect pixel values. These differences are immaterial because we
can convert our version of GSA into the standard version by working with the transposes of
all the matrices, including the square ones. The only real effect of transposition is to reverse
the pixel coordinates. That is if w € {0,1,2,3}* is the reverse of w’, and G is the transposed
version of the GSA F', then G(w') = F(w). The main point is that the same generating power
is available in both versions.

There is an issue that we do not consider here, although an analysis of it has been given in
[6]. What is the quantitative relationship between the precision and range of magnitude of the
weights of a GSA and the required pixel quantisation level? Theorem 4 of [6] says, essentially,
that the precision of the weights need not exceed by very much the pixel quantisation level
g. Notice that the definition of image-generation by a GSA is not entirely satisfactory from
the standpoint of the pixel quantisation level because it does not specify how a GSA-generated
pixel value is to be assigned to the set of admissible values {0,1/27,... 1}. In this paper, we
assume that GSA-generated values are admissible.

A stochastic automaton (SA), sometimes called a probabilistic automaton, is a special kind of
GSA where the square matrices and u are stochastic (rows sum to 1). If F'is a SA, then F(w)
is automatically constrained by the stochastic condition to be between 0 and 1. A language



L C€{0,1,2,3}* is said to be A-stochastic if L = {w | F'(w) > A}, where 0 < A < 1. A language
L is said to be (1/2,¢€)-stochastic if L = {w | F(w) > 1/2 4 €}, where 0 < € < 1/2. Rabin
showed that the (1/2,¢)-stochastic languages coincide with the regular languages. See [10].

We establish the fact that it is relatively easy and inexpensive in terms of states to add GSAs.

Lemma 1 Let o, 3 be real numbers. let F' = (u,v, Mo, My, My, M3) and F' = (u',v', My, M|, M}, M})
be GSAs where F' has g states and F' has ¢’ states. A GSA G such that G(w) = o - F(w) +

B+ F'(w) can be constructed having h = 2max(g, ¢') states. If F' and F' are SAs, 0 < a, 3 < 1

and a + =1, then G can be built as a SA.

Proof : Let G = (x,y, Ho, H1, Ha, Hs). Assume g > ¢', and let F' have ¢ states.

o for 1 <i:<g, 121 =a-up;,and forl << ¢ x99, =0 u’12 If ¢ <1< g, then
$172i = 0

o For 1 <: <y, ys-11 =01, and for 1 <o < ¢, yqgi1 = vl’»J. If ¢ <1< g, then yz,1 = 0.

e Let v € {0,1,2,3}. H, can be thought of as a ¢ x ¢ matrix whose entries are 2 x 2
matrices. The 2 x 2 matrix at row 2, column j has zeros in the off-diagonal entries. The
upper diagonal entry is (M, ); ;. The lower diagonal entry is (M), ; if both 4,7 < ¢/,
otherwise it is zero.

It is easy to check that G(w) = o - F(w) + 3 - F'(w).

If Fand F' are SAs, and « and /3 are properly constrained, then it is clear that the row vector
x is already stochastic. If ¢' < g, then for ¢ > ¢', make the lower diagonal entry of (M!); , = 1.
This ensures that M is stochastic. This will not have any effect because in this case y51 = 0.
O

The next result is attributed to Paz [9], but the formulation we use is due to Macarie. See [§]
for the proof.

Lemma 2 (Paz-Macarie) Let F' be a GSA, and let a be the mazimum over the sums of the
absolute values of row entries for its four square matrices, and let b be the sum of the absolute
values of the entries of its row vector. There is a SA, F', with at most twice as many states as

F such that

where n is the length of w.

We point out that it is always true that |F'(w)| < ba™ for any length n string w. This means
that 0 < F'(w) < 1.

3 Ablayev’s language Ky

We recall the right-congruence relation @ ~j, 2’ induced on A* by a language . C A*. Here A
is a finite alphabet. We write # ~, 2’ if for all y € A*, 2y € L iff 2’y € L. The Myhill-Nerode
Theorem asserts that L is a regular language iff the number of ~-equivalence classes is finite.
It is also true that if L is regular, the number of its ~p-classes coincides with the minimum
number of states in any deterministic finite automaton that accepts L. We let m(L) be the



number of ~p-classes of the language L. This material is classical [11].

Let L. C A* be a regular language and let zq,...,2,, be representatives of its ~p-classes. A
test set G C A* is a set of strings that distinguishes these representatives. That is, for each
pair x; # x; of representatives, there is some y € (& such that exactly one of z;y or z;y is in L.
Define (L) to be the minimum cardinality of any test set for L. Notice that logm < 6(L) < m.
We follow Ablayev and define T'(L) to be

71y =25

~ logm

The next result, due to Abalyev provides the basis of our approach. See [2]. The function
H(p) = —(plogp + (1 — p) - log(1 — p)), where 0 < p < 1, and log designates the binary
logarithm.

Theorem 1 (Ablayev) If L is a reqular language with m ~p-classes, 0 < A < 1/2, and F is
a SA such that
L={w| Flw)> 1/24 )},

then I must have at least

o L=T(D)H(1/24))

states.

The language Ky, about to be defined has been discussed in [2]. If @ € {0, 1}, let ||| designate
the integer that is one more than the integer whose binary notation is x. Let N = n + [logn],
and define the language K C {0,1,2}* to be the set of words of the form w = 22y, where

o € {0,1}" where 1 <k <n and y € {0,1} sl

e & has a | in position ||y||.
For example, with n = 3 we have N =5 and 010201 € K5, but 010210 ¢ K.
Lemma 3 m(Ky) > 2" and 6(Kn) < 2n = O(log m(Kn)).

Proof : First we argue that m(Ky) > 2". Let x,2" € {0,1}" and let @ have a 1 and 2’ have a
0 in position ¢, respectively. If y is a binary string which is the binary notation for z — 1, then
22y € Ky and 22y € Ky.

Second, we argue that there is a test set for Ky of size 2n. This will establish that 6(Kx) =
O(logm(Ky)), since m(Ky) = 20(n) | Define G as

G = {0, 1}y 2{0, 1} Tos"]

It is straightforward to check that if = is a string for which there exists y such that zy € Ky,
and 2’ o, x, then there exists such a y in G. O



4 Proof of the main theorem

Let Ky designate any (¢, N)-image such that every pixel in Ky has a value greater than any
pixel not in K.

Theorem 2 Forany0 < e <1, andn > 3, Ky cannot be generated by a GSA with fewer than
2"7¢ states.

Proof : The idea of the proof is to show that a GSA I that generates K can be converted into
a SA, G that has at most eight times as many states as F', and accepts K with a probability
of at least 1 — ¢/nlogn. By Lemma 3, T(Ky) = O(1), and m(Ky) > 2". Note also that
H(1 —e€/nlogn)) = O(e/n). These facts, and Theorem 1 show that any SA accepting K with
a probability of at least 1 — ¢/nlogn must have at least 27(1=0(/7) = 27=0(9) states.

Next, we need to ensure that ba™ > 3. Since a > 1, we concentrate on rescaling b so that it is
at least 3. If b < 3, then we replace the GSA F' with a GSA R such that R(w) = F(w) and
the sum of the absolute values of the row vector of R is at least 3. Let R’ and R” be GSAs
identical to F', except that their row vectors are o - u and (1 — «) - u, respectively. Here, u is
the row vector of F and o = (3/b+ 1)/2. By Lemma 1, let R be the GSA with twice as many
states as [ such that R(w) = R'(w) + R"(w) = F(w). However, notice that the sum of the
absolute values of the entries of the row vector for Ris (o +a—1)-b=3.

At this stage we can now assume that F'is a GSA for which ba™ > 3. Let f be the minimum of
F(w) for w € Ky. Since Ky is an image, 0 < f < 1. By Lemma 2, there is a SA, F” such that
__Fw)
C2-b-an
where b > 0, ¢ > 1, and @ and b can be determined from F'. We seek a rational 0 < o < 1 such
that

i

£ (w)

+1/2,

oz-(Q‘b‘an—l—l/Z)—l—(l—oz)>1—6/n10gn, (1)
and
a-(%—l—lﬂ)—l—(l—a)<1—6/n10gn 2)

Eq. 1 is the constraint that for pixels w € Ky, the acceptance probability must exceed
1 — ¢/nlogn, and Eq. 2 is the constraint that if w ¢ Ky, then the acceptance probability
is smaller than 1 — ¢/nlogn.

It is straightforward to check that
al <a< </ (3)
n-logn-(1/2 —1/2ba™ + 1/27ba™) n-logn-(1/2 —1/2ba™)
satisfies both Eq. 1 and Eq. 2. Notice that since ba™ > 3, and 0 < f,¢ < 1, we have that
0 < a <1 provided n > 3.

Let F be the one-state SA such that F"(w) = 1 for all w. By Lemma 1, a SA G can be
constructed with twice as many states as F’ (so up to eight times as many states as the original
F) such that

Gw)=a-F'(w)+ (1 —a)- F"(w)

From the value range of o, we have that the set of strings accepted by GG with probability
exceeding 1 — ¢/nlogn is precisely Ky. O



5 Discussion and open problems

Theorem 2 shows that there is a (¢, N)-image Ky (N = n + logn) that cannot be generated
by a GSA with fewer than ©(2"/logn) states. Since the number of pixels is § = 4"Flog"  we
have shown that at least \/S/8n states are needed.

There are two matters that need to be considered in order to assess the significance of Theo-
rem 2 as a limitation on the compression achievable by GSA. The theorem only tells us that
exact generation of Ky with S pixels requires approximately v/S states. What happens when
loss is permitted? Notice that up to this point, the pixel quantisation level has not played an
important role. The only type of loss or noise that might make possible a reduction in the
number of states below /S is one that sends the value of some pixel in Ky below that of some
pixel not in K.

Theorem 2 is not an ‘asymptotic’ result. It applies for practical values of the resolution N =
n 4 log n. For example, it N = 20, then n = 16, and we get that a Kyp-image would require a
GSA with at least

2w
8 - log 16

states, which is already a very large automaton.

It remains to investigate whether a language other than Ky can be found which yields a lower
bound on the number of states of the form S'7° where § < 1. Another critical task is to
investigate in what ways tolerable forms of loss (and how one might measure loss) help GSA
to achieve high compression ratios.
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