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Abstract

Hierarchies and Complexity Results for Priority Algorithms

Periklis A. Papakonstantinou
Master of Science
Graduate Department of Computer Science
University of Toronto
2004

Priority Algorithms is a model of computation that generalizes on-line computation,
attempting to formulate the notion of greedy algorithm. We study questions concerning
Priority Algorithms for variants of Job Scheduling. In the first part of the thesis we
separate the class of adaptive from the class of greedy and adaptive priority algorithms,
which was an open question [4]. We also compare the power of restricted classes of
priority algorithms defined for the Job Scheduling and we define a memory hierarchy
and show that it is robust. The second part studies questions, where given a finite set
of jobs, we want to decide whether a given priority algorithm is optimal, or whether
there exists, an optimal priority algorithm. For different settings of these questions we
derive containment and hardness results for several complexity classes. Finally, we study

normal forms and properties of optimal priority algorithms.
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This is an extended version of the MSc thesis submitted to the Department
of Computer Science, University of Toronto (January, 2004).

There are also some results (related but) not included in the thesis. Every
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Chapter 1

Definitions and Related work

This chapter discusses some of the previous work done in fields related to this thesis.
This work goes in two orthogonal directions of study and we provide previous work, pre-
liminary knowledge and definitions for both of them. Section 1.1 gives some motivation
for the main topic of this thesis. Sections 1.2 and 1.3 provide the definitions for the Job
Scheduling problem and for the model of Priority Algorithms. In section 1.4 we give an
outline of our contribution. Section 1.5 discusses the previous work conducted in this

field and in section 1.6 we give some definitions from complexity theory.

1.1 Motivation

Unless we have a proof that P # NP it is not possible to state unconditional inapprox-
imability results regarding the existence of general approximation algorithms for many
common combinatorial properties. By general we mean that the model of computa-
tion is a polynomial time bounded Turing Machine. During the last twenty years many
new proof techniques and powerful mathematical machinery have been developed in this
direction. Recent advances in the Probabilistically Checkable Proof (PCP) systems com-
bined with algebraic and combinatorial tools gave many promising results, stating lower
bounds on the approximation algorithms. These are all conditional statements and base
their validity on assumptions like NP # P.

In [4] (also in [5]) a formulation of the greedy and “greedy-like” computation model is
presented, and with respect to this we would be able to prove unconditional statements for
lower bounds on the approximation ratio of Priority Algorithms. This approach comes

under the title “Priority Algorithms” and it is in essence a generalization of on-line
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computation.

1.2 Job and Interval Scheduling

Scheduling theory is a rich field of study which dates back even before the establishment

of the foundations of complexity theory. Scheduling theory studies the Job Scheduling

Problem, and many variants appeared in the literature [9, 19, 12]. In all scheduling

models we are given a set of jobs S = {Jy,...,J,}, where the problem is to schedule

them on one or more processors.

Definition 1.2.1.

A job J is a vector (id,r,d,p,w) € Z=°, where id is the job descriptor, r, d, p is
its release, deadline and processing time and w is its profit (weight). Furthermore,
r < dand p < d—r. The job descriptor is used to distinguish among jobs of the
same r,d,p and w. We may omit ¢d given that it is denoted by the job subscript

(for example J;) or it is clearly implied.

An interval is a restricted form of job where p = r — d. That is, an interval J is
well defined by J = (id, r, d, w).

In the case of proportional profit p = w. In this case a job is defined as (id, r,d, p)

and an interval is defined as (id, r, d).

Given two intervals J; = (r1,dy, w;) and Jy = (12, dp, we), where dy > dy, we say

that they overlap each other if dy > ry.

Definition 1.2.2.

Let S = {Ji,Ja,...,J,} be a finite set of jobs. A feasible schedule or simply a
schedule is a set, where each elements is a job from S together with its starting
time and the processor where it is scheduled. In a feasible schedule there are no
two overlapping jobs, scheduled on the same processor. Notice that a scheduled job

can be viewed as an interval.
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e Let S’ be the set of jobs that correspond to a feasible schedule of jobs from S.
profit : S'" — Z is the cost function denoting the total profit of S’, that is

profit(S') =3 ; cq Wi

e For a finite set of jobs S, a schedule is optimal if its total profit is maximal over all

feasible schedules.

In this thesis we are interested in non-preemptive Job Scheduling where the machine
environment consists of identical processors. The optimization Job Scheduling Problem
is given a finite set of jobs and a number of processors m, find a feasible schedule that
maximizes the total profit (P|r;| > w;U; in [9] notation). If we restrict to the case where
we have intervals then we have the Interval Scheduling Problem. Naturally, the decision
variation of this problem is where we are also given a bound B and we want to decide if

there exists a feasible schedule with total profit greater than or equal to B.

1.3 Priority Algorithms for Job Scheduling

In this work we are studying problems related to priority algorithms for the Job Schedul-
ing problem. We study the cases of Job and Interval Scheduling for one and more than
one (identical) machine environments. In the Priority Algorithms model the decisions
made are not necessarily computable. The main characteristics of the Priority Algorithm
model (what makes this computation non-trivial - since the function is an arbitrary one)
are: (i) the algorithm does not have access to the input set in advance and (ii) the com-
putation proceeds in a round-fashion where in each round an input element is presented
to the algorithm which then makes an #rrevocable decision. The algorithm “interacts”
with the input by specifying an ordering for a possibly infinite set and in each round
the next, or highest priority, available element is presented. Note that in this sense the
algorithm might be an infinite object. The irrevocable decision that the algorithm makes
on a job, is realized as a pair of this job with the rejection decision or the job paired
with the processor where is scheduled and its starting time. We distinguish between two
types of Priority Algorithms. The Fized Priority and the Adaptive Priority model. In
the Fixed Priority model the algorithm orders the set of jobs S only at the beginning

and then proceeds according to that order.



CHAPTER 1. DEFINITIONS AND RELATED WORK 4

FIXED PRIORITY ALGORITHM

e Determine a total ordering 7 for the set of all possible input elements.
e On a finite set S repeat:

— The next available input element, according to 7, is presented to the algorithm.

— Make an irrevocable decision about scheduling that input element.

Until decisions are made for all data items on the finite input S.

Adaptive Priority Algorithms or simply Priority Algorithms, differ from the above men-

tioned model to the fact that in each round they can reorder the (remaining) data items.

(ADAPTIVE) PRIORITY ALGORITHM

On a finite input set repeat:
e Determine a total ordering m; for the set of all remaining possible input elements.
e The next available input element, according to ;, is presented to the algorithm.
e Make an irrevocable decision about scheduling that input element.

Until decisions are made for all data items on the finite set S.

Say that A is a priority algorithm (the function that realizes the priority algorithm) on
an input S. We denote by A(S) the set of scheduled jobs when the algorithm terminates.
It is obvious that the fixed priority model is a restriction of the general (adaptive)
one. We can add two more natural types of restrictions on the priority model. We define
the greedy property to be a restriction on the above mentioned model, where when a

greedy priority algorithm reads a job that can be scheduled it necessarily schedules it.
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We also define the memoryless restriction to refer to algorithms where every decision and
the ordering is based only on the scheduled (not on the rejected jobs). More about the
memoryless property can be found in 2.3.

We denote as PRIORITY the (unrestricted) class of adaptive priority algorithms. If
the class is restricted to the class of fixed priority algorithms we add the prefix FIXED or F
for short. If the algorithms are restricted to make greedy decisions only then we write as a
prefix GREEDY (G) and if the algorithms are memoryless then this is denoted by a prefix
MEMORYLESS (M). For example, G-F-PRIORITY denotes the class of fixed priority
algorithms for the Job Scheduling problem with memory where the decisions are greedy,

and M-PRIORITY denotes the class of memoryless (adaptive) priority algorithms.

1.4 Contribution

In this thesis we are dealing with models of Priority Algorithms for the Job Scheduling
problem and its variants. Taking into account all possible combinations of the restric-
tions, for classes of priority algorithms, we have eight classes for priority algorithms.
In chapter 2, we develop basic combinatorial tools that we use to construct input in-
stances so as to compare every possible pair of classes of Priority Algorithms for the
Job Scheduling Problem. The LPF (Largest Processing Time first) algorithm is optimal
w.r.t. its approximation ratio for one processor Interval Scheduling with proportional
profits. Since, LPF € MEMORYLESS-GREEDY-FIXED-PRIORITY (the lowest level of
the hierarchy) it is impossible to separate classes of priority algorithms, for this specific
problem, based on the approximation ratio. We base our separation results on the weaker
notion of not-feasible-simulation. We say that a class of priority algorithms Cs dominates
(>) a class of priority algorithms C} if for every algorithm in C; there exists an algo-
rithm in Cy with at least the same profit on every input. For example, PRIORITY
dominates over GREEDY-PRIORITY, since GREEDY-PRIORITY is just a restriction
of the general class. We say that C5 partially dominates Cy if for every algorithm in
C there exists an algorithm in C5 such that there exists an input instance where the
algorithm in C has greater profit. Partial domination is the weakest notion that implies
a “not-feasible-simulation notion”.

One of the early stated open questions was whether greediness is a real restriction to
the model [4]. We answer this question affirmatively by separating GREEDY-PRIORITY
from PRIORITY even for the case of one processor Interval Scheduling with propor-
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tional profits. Furthermore, chapter 2 contains a thorough comparison of every pair of
classes of priority algorithms for the case of: (i) Job Scheduling, (ii) Interval Scheduling
for one processor machine environments and (iii) Interval Scheduling on multiple pro-
cessors. Hence, for each case we have 64 comparisons. With respect to cases (ii) and
(iii), the same relations hold between every pair of priority algorithm classes. Thus, in
total we have 128 lemmata. In the same chapter we define variations of the memoryless
property and we also define classes of priority algorithms of bounded memory. We show
that the variations correspond to algorithms of different power. Notice that there are two
extremes. The first is where a priority algorithm makes decisions based on the sets of the
so far scheduled and rejected jobs and the other is where the algorithm makes decisions
based only on the set of the so far scheduled jobs (and the algorithm can remember all
information about a job). In section 2.3 we see that the stronger case (fact 2.3.1) is the
same as if the priority algorithm has a memory where it is allowed to store arbitrary
data. Furthermore, in the same section, we define a hierarchy of classes of algorithms
that have bounded memory. Thus, we define a hierarchy of classes of algorithms that
exist between these two extremes. We show that this hierarchy is robust; that is, in gen-
eral, priority algorithms that remember k rejected jobs cannot be simulated by priority
algorithms that have memory only for £ — 1 rejected jobs. Based on a variation of the
bounded memory model we show that priority algorithms with £ memory bits cannot be

simulated (in general) by priority algorithms having £ — 1 memory bits.

Chapter 3 discusses the complexity of languages related to priority algorithms. Pre-
vious (to priority algorithms) formulations of greedy algorithms through connections to
matroids, greedoids and matroid embeddings (e.g. [6, 10, 18, 14]) capture a restricted
class of greedy algorithms, which are optimal in the exact sense. On the other hand,
priority algorithms formulate a wide class of greedy algorithms which may not though be
optimal (in the exact sense). We say that a priority algorithm is optimal on a given set of
jobs, if it gains optimal profit on every subset of this set. Simple examples show that sets
admitting optimal priority algorithms have associated subset systems which are of very
different structure than matroids and greedoids. With respect to the priority algorithms
model we would like to know the structure of inputs admitting (exact) optimal solutions.
Furthermore, we would like to investigate properties of such optimal priority algorithms.
We study two types of questions. The first type is given a finite set of jobs or intervals
and the description of a priority algorithm, we want to decide whether the algorithm is

optimal for this set. The second type of questions is given a finite set of jobs or intervals,
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we want to decide whether there exists an optimal priority algorithm for this set.

This chapter contains two main results that show, for languages corresponding to
the above mentioned questions, two problems to be in P. The first corresponds to the
case of whether there exists an optimal greedy-fixed algorithm for the proportional profit
Interval Scheduling problem on one processor. This problem has a natural (and elegant)
representation through the ordering of the intervals of the input set. We combinatorially
characterize such optimal algorithms and we use this characterization so as to show that
the problem is in NC?.

Perhaps the most interesting result concerns the existence of optimal priority algo-
rithms for given sets of intervals (when scheduling in one machine environments). We
derive combinatorial properties for sets of intervals that admit optimal priority algo-
rithms. Perhaps surprisingly, we show that the problem is in NC? even for arbitrary
(general) priority algorithms. It is also interesting to note that if an optimal priority
algorithm exists (for a given set) then there also exists an optimal priority algorithm in
MEMORYLESS-GREEDY-FIXED-PRIORITY.

The complexity of languages related to the existence of optimal priority algorithms
(for a given finite set of jobs) is partially resolved. Obviously, the general problem is in
ESPACE. We study the case where the sets contain jobs (instead of containing only
intervals) and we derive normal forms and properties for optimal priority algorithms.

A more complete treatment of the subject would require the study of relevant lan-
guages when the algorithm cannot be simply described through a total ordering on the
set of jobs. Regarding the optimality of a priority algorithm, we observe that when the
algorithm can take decisions of where to schedule a job or interval then the problem is
not well-defined unless we agree on specific computational restrictions on the algorithm.
In this case we do not provide some results, since when the algorithm is implemented
in an “efficient” (resource bounded) model of computation the problem has (i) trivial
answers and (ii) it does not have an elegant definition.

In chapter 3 we also provide other related complexity results. For example, we show
that deciding whether a greedy-fixed priority algorithm is optimal on a set of intervals,
each of which of the same profit, is in uniform AC°.

We also provide an N L-completeness result. Say that we are given a set of intervals,
where each interval has profit a polynomial to the number of intervals in the set. The
problem of determining whether there exists a schedule of at least a specific profit is

N L-complete. This seems interesting since we have shown (as an intermediate step in
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one of our proofs) that the same problem for arbitrary profits is in NC?, whereas there

does not seem to exist an obvious way that shows the problem to be in NL.

1.5 Related work

In this section we briefly review some complexity results for variants of Job Scheduling
and we also discuss the previous work in the field of priority algorithms.

The scheduling theory is dated even before the existence of the foundations of com-
plexity theory [8]. We review some complexity results for variations of the Job Scheduling
problem. When the problem is restricted to inputs of intervals, each of which has the
same profit, then the problem can be easily shown to be in P [3]. The well-known
algorithms SFTF (Shortest Finishing Time First) and LSTF (Largest Starting Time
First) are optimal on such sets. It also follows as a corollary that their priority algorithm
analogs are also optimal. We note that these algorithms are in the most restricted class
of priority algorithms, that is MEMORYLESS- GREEDY-FIXED-PRIORITY. For the case
of intervals with arbitrary profits, using flows or Dynamic Programming, it can be shown
that the problem is in P [3]. Even for the one-processor case, Interval Scheduling with
proportional profits, it is shown [4] that no priority algorithm can achieve an approxi-
mation ratio better than 3. This intuitively means that no “greedy-like” algorithm can
solve this problem in the exact sense, despite the fact that the problem is in P. If the
given set contains jobs then determining the optimal schedule is N P-hard, even for one
processor machine environments. The corresponding decision version is N P-complete in
the strong sense. This problem is solvable within pseudopolynomial time if the numbers
in the release and deadline times are bounded by a constant, but it remains N P-complete
even when the deadline and the release times can only take two values. It can also be
solved in polynomial time even if the release and the deadline times are arbitrary and
there are precedence constraints, so long as all jobs are of equal length.

The rest of this section is devoted to the previous work in the field of priority algo-
rithms.

Borodin, Nielsen and Rackoff [4] initiated the study on the field of Priority Algorithms.
This work provides the basic definitions of the models of computation for the Priority
Algorithms for the Job Scheduling, the Makespan problems and some of their variants.
In this work there is an extensive intuitive discussion on the goals of this study, its

applicability and arguments on what classes of greedy and greedy-like algorithms this
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model captures. There is a discussion of the connection of Priority Algorithms with on-
line computation and “greedy” approximation algorithms that have appeared in the field
of approximating N P-hard optimization problems. It appears that priority algorithms
cannot even solve, in the exact sense, Job Scheduling optimization problems that are
known to be in F'P; where F'P stands for the function analog of P. For example it is
known that even for arbitrary profits the Interval Scheduling on multiple machines can
be solved optimally in polynomial time using flows [3]. The focus on this work is on Job
Scheduling and Makespan problems. Results from on-line computation and scheduling
theory are ported in the context of priority algorithms. The authors present lower bounds
on the approximation ratio for classes of priority algorithms and some of them are shown
to be tight. They also ask questions of what happens if the algorithm knows in advance
the length of the input or other “global” parameters for the input set. In the same
work there is also a first attempt to define randomized classes of Priority Algorithms. In
chapter 2 of this thesis we make an extensive use of a powerful simulation lemma from [4]
which proves that MEMORYLESS-PRIORITY &~ MEMORYLESS-GREEDY-PRIORITY.
In general, we consider this as a seminal paper in the field of complexity theory, where
unconditional lower bounds are derived through the formalization of specific algorithmic
paradigms.

In [4] the Makespan problem is considered on multiple homogeneous machine envi-
ronments. In the same work there is also consideration of the subset model for the same

problem, where every job can be scheduled on specified subsets of machines. Continuing

the work of [4], Regev in [20] showed a (m?fi&) lower bound on the approximation
ratio of any Fixed-Priority Algorithm, where m is the number of machines.
Angelopoulos and Borodin [7] define and study applications on the model of Prior-
ity Algorithms for two well-known N P-hard optimization problems, Set Cover and the
(uncapacitated) Facility Location. Since, (in the intuitive sense) greedy approximation
algorithms have been proposed for uncapacitated facility location and set cover, it is
natural to study whether unconditional lower bounds can be derived for these problems,
given that the computational model captures the notion of greediness. Furthermore, the
authors argue that many primal-dual algorithms, which have an alternative combinato-
rial statement, can be seen as Priority Algorithms. The authors also study closely the
relations of priority algorithms with proposed approximation algorithms for these prob-
lems and port some of them in the priority algorithms area. It is shown that no priority

algorithm for the uniform metric facility location problem can achieve an approximation
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ratio better than %, where for the general (not necessarily metric) case a lower bound of
Q(logn) is shown, where n is the number of facilities. Porting a well-known approxima-
tion algorithm, a tight bound Inn — Inlnn + ©(1) on the approximation ratio is proved
for the adaptive-greedy class (under the specialized model definition) of algorithms. The
same work extends its study for the case of memoryless and fixed priority algorithms.

A more thorough treatment of randomized classes for priority algorithms is presented
by Angelopoulos in [1]. This work is motivated by similar studies on the field of on-line
computation. The author distinguishes between the ways that someone can introduce
randomization in a priority algorithm. One is where the algorithm chooses a random
ordering of the data items and the other is where the algorithm makes random decisions
on each data item. When randomization is applied both in the orderings and the decisions
we have the case of a fully randomized algorithm. This paper shows lower bounds for the
metric facility location and the makespan scheduling problems, under this randomized
setting. Specifically, for the metric facility location problem, it shows that no fully-
randomized priority algorithm is better than a % approximation and for the case of the
randomized ordering it is shown that a 1.5 lower bound holds for the greedy-fixed priority
algorithms. This work provides different lower bounds for alternative representations
of the input. For the makespan scheduling problem on identical machines it is shown
that no priority algorithm achieves an approximation ratio better than % and when
the algorithm is fixed-priority with randomized decisions (for environments with at least
three machines) the lower bound on the approximation ratio is %.

An extensive study of various priority algorithms for graph problems is in [7], by Im-
pagliazzo and Davis. This work studies the approximation power of priority algorithms
for the Shortest Path, Steiner Tree, Weighted Vertex Cover and Independent Set prob-
lems. The authors describe (“define”) an abstract model for priority algorithms and they
provide a definition for every problem under question. They also describe an abstract
way of capturing the notion of memoryless algorithms and they present a general lower
bounding technique in terms of a combinatorial game. Results of this work is that no
fixed priority algorithm can solve the Shortest Path problem with any (constant) approx-
imation ratio (in contrast with the Dijkstra’s algorithm). For the case of the Weighted
Vertex Cover there is a lower bound of 2 on the approximation ratio of a (general) pri-
ority algorithm, where for the case of Metric Steiner Tree the approximation ratio lower

13 3

bound is 77. For the Maximum Independent Set the presented lower bound is 5 even

when the graph is of degree at most 3. The authors use their definitions of the memory-
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less algorithms to prove that no memoryless adaptive priority algorithm can achieve an
approximation ratio better than 2 for the Weighted Independent Set problem on cycles
with weights 1 and k£ and in the same time they give an upper bound by presenting a
(1 + %)—approximation adaptive priority algorithm for the same problem. This shows
a separation between the memoryless and with memory classes of priority algorithms for
this problem. The second chapter of this thesis discusses analogous questions for the Job
Scheduling case, where the proofs are based on different concepts than those used in [7].
In this work there is also a straightforward fact derived from the definition of memoryless

priority algorithms.

Proposition 1.5.1. Memoryless algorithms can define a new ordering on the possible

nput elements only after casting an accepting decision.

In [1, 2] there is a discussion about different representations of the problems considered
in these works. For different representations of the input elements the lower bounds on
the approximation ratios are also different. A similar remark is also made in [7]. We
also note that all the different representations of the inputs, presented in these works,
are polytime equivalent. The sensitivity in the way we represent the input elements is a
consequence of both the fact that the algorithm does not have access to the whole input
and that it makes irrevocable decisions. Thus it seems that the Priority Algorithms
model is not very robust. From a complexity theoretic perspective it seems that the
whole study can be confined to the question whether p > 1. In order to achieve this task
we must provide a universal restriction to the representational size of the input elements
(for example each data element should be of length O(logn), where n is the length of
the input) and argue about the possible (polytime bijective mappings) between different
representations of the input.

The separation between classes of graph theoretic problems, appeared in [7], is based
on a separation based on the approximation ratio achievable by algorithms belonging
to different classes. This separation introduces a very strong notion, not applicable in
this thesis. For example, for the one machine environment Interval Scheduling problem
(with proportional profits) the lower bound on the approximation ratio is 3, for the class
PRIORITY. This bound is tight since LPF € MEMORYLESS-GREEDY-FIXED-PRIORITY
has approximation ratio 3. Notice that an algorithm at the “lowest level of the hierarchy”
achieves the lower bound of the stronger class. Thus it is impossible to base a separation

on similar arguments. Our approach, presented in the second chapter, is based on the
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definitions of some relations that capture the notion of “not-feasible-simulation”.

1.6 Definitions and Preliminaries from Complexity

Theory

The definitions and the preliminary results of this section can be found in almost any

complexity theory textbook, such as [17].

1.6.1 Class characterizations by Turing Machines

Definition 1.6.1. Let t,s : Z2° — Z20 and ¥ a finite alphabet.

e TIME(t(n)) is the class of all languages L C X* decided by a O(t(n)) time bounded
Turing Machine.

e NTIME(t(n)) is the class of all languages L C ¥* decided by a O(t(n)) time

bounded Non-deterministic Turing Machine.

e SPACE(s(n)) is the class of all languages L C ¥* decided by a O(s(n)) space
bounded Turing Machine.

e NSPACE(s(n)) is the class of all languages L C ¥* decided by a O(s(n)) space

bounded Non-deterministic Turing Machine.
Definition 1.6.2.

o P=|J,TIME(nF)

NP = \J, NTIME(n*)

L =SPACE(log(n))

NL = NSPACE(log(n))

ESPACE = SPACE(20™)
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1.6.2 Circuit complexity classes and preliminary results

We provide some definitions from circuit complexity. Our notation is compatible with
the one used in [21]. The definitions and lemmata from Descriptive Complexity can be

found in [11].

Definition 1.6.3. Let B be a basis, and let s,d : ZZ° — Z=° We define the following

complexity classes.

e SIZE — DEPTHg(s,d) is the class of all sets A C {0,1}* for which there is a
circuit family C over basis B of size O(s) and depth O(d) that accepts A.

e FFSIZE—DEPTHg(s,d) is the class of all functions f : {0,1} — {0, 1}* for which
there is a circuit family C over basis B of size O(s) and depth O(d) that computes

f.

In this thesis we are mainly concerned with circuits over the standard AND,OR, NOT
basis. Whenever we omit B then this means that we have the standard (bounded fan-in)
basis. When we refer to circuits of unbounded fan-in we mean that AND and OR have
unbounded fan-in. In this case we may omit B and just write UnbSIZE — DEPTH (s, d)
or UnbFSIZE — DEPTH (s,d). Say that F is a class of functions and SIZE(F) =
Urer SIZE(f).

Definition 1.6.4. For ¢ > 0, define
NC' = SIZE-DEPTH (n°Y, (log(n))") and AC* = UnbSTZE—~DEPTH (n°Y, (log(n))")

Also
NC =|JNC" and AC =|]AC
i>0 i>0

As far as it concerns the uniformity conditions we use logspace uniformity for every
NC* AC" where i > 1. For the case of the AC? we use DLOGTIME uniformity. We
refer to the uniform classes (that concern this thesis) as U, — NC? and as Up — AC”.
Especially for the case of Up — AC? we use an equivalent logical characterization, where
Up — AC® = FO|<, bit]. The following paragraph is a brief introduction to FO[<, bit].
Details can be found in the excellent textbook written by Immerman [11].

FO[<,bit] is the set of languages that can be expressed through first-order formulae.

We fix a specific structure for these formulae which has the standard interpretation of
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< (over the integers), a predicate B, where B(i) is true iff the i-th bit of the input is
1, a predicate bit C N x N, bit(n, i) is true iff the i-th bit of the binary representation
of integer n is 1 and a finite universe which contains the integers from 1 to n where n
is the length of the string. It can be shown that in this structure we can also define
the predicates LENGTH, PLUS, MULTIPLY, EQUAL, LESS — OR — EQUAL,
where LENGTH (i) is true if the input length is i and the rest of the predicates have
the obvious meaning. Note that these are predicates that have nothing to do with the

problems of definition 1.6.5.
Definition 1.6.5.

e — Problem: ADD (addition)

Input: Two numbers in binary of n bits each

— Output: the sum of the input numbers in binary

e — Problem: MAX

— Input: n numbers in binary of n bits each

— Output: the maximum of these numbers in binary
e — Problem: EQUAL

— Input: two n bit numbers in binary

Question: are the two numbers equal?

e — Problem: LESS

Input: two n bit numbers a and b in binary

— Question: is a smaller than b7

Below we provide some well-known results from the circuit complexity that can be

found in, almost, every text or survey of the field.
Lemma 1.6.1. U, — NC'C LC NLC U, - NC?CU, - NC C P.
Lemma 1.6.2.

e ADD € FSIZE — DEPTH (n°",log(n))

e MAX € FSIZE — DEPTH (n°",log(n))
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o EQUAL € Up — AC".

o LESS e Up — ACP,

15



Chapter 2

Separating Classes of Priority
Algorithms

This chapter studies the relations among classes of Priority Algorithms. Whenever we
mention the term “priority algorithm” we refer to a priority algorithm for the Job Schedul-
ing Problem or to restrictions of Job Scheduling, such as Interval Scheduling. We compare
every two classes of Priority Algorithms for the Job Scheduling problem. In this context
the term class corresponds to a set of algorithms sharing the same constraints on their
power (see section 1.3). In section 2.2.3 we give tables for the comparison of any two
classes of priority algorithms for the possible settings of the Job Scheduling problem. In
section 2.3 we define natural variations of the memoryless property and we show that
these variations result computational models that differ in power. Recall that the memo-
ryless property (as defined in the first chapter) corresponds to Priority Algorithms where
the function that decides whether to schedule a job, does not depend on the jobs rejected
so far. We define machines that have bounded memory. The main theorem of this section
is that any two classes that differ in at least one memory cell (that is, one of the classes

has memory for one more rejected job than the other class) are different.

2.1 Definitions

In [4] a lower bound of 3 is presented on the approximation ratio of any priority algo-
rithm A € PRIORITY for the Interval Scheduling problem with proportional profits
and a machine environment of m = 1 machine. It has also been shown that this bound is

tight, since the LPT (Longest Processing Time first) priority algorithm has approxima-

16
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tion ratio 3. The fact that LPT € MEMORYLESS-GREEDY-FIXED-PRIORITY makes
it impossible to separate classes of priority algorithms for the Interval Scheduling, pro-
portional profit and one processor problem, based on the approximation ratio. Thus, for
the case of this problem and other variations of Job Scheduling we adopt an approach
that shows separation by proving the existence of a priority algorithm in a class such
that every algorithm in another class cannot achieve at least the same profit (as the
previously mentioned algorithm) on every input. That is, we show that it is not feasible
to do a simulation with at least the same profit. We give some definitions regarding the

notation for comparing classes of priority algorithms.
Definition 2.1.1.

e For two classes of priority algorithms C; and Cs, C is partially dominated by
Cy, D(C1,Cy), iff there exists a priority algorithm A € Cy, such that for every
algorithm A’ € C there exists a finite set of input jobs S such that profit(A(S)) >

profit(A'(S)).

e Ifforevery A € C| there exists an A" € Cy, such that for every input S, profit(A(S))
profit(A’'(S)) then we write C; < Cy. Note that C; < Cy means that C; can be
simulated by Cs, that is =D(Cs, C) holds.

o If (] < (5 and Cy < (5 then we write C ~ Cs.

e If D(C},C5) and C; < Cy then we write Cy < Cs.

If it is true that D(Cy,Cy) and D(Cs, C1) then we write C; L Cs.

One thing to notice is that writing the relation D(C}, Cs) in infix notation “Cy D Cy”,
where ('} and Cy are classes of priority algorithms, then we read “Cy is dominated by
Cy” (and not the opposite).

It is easy to see that the relation D is not transitive, whereas the relations < and <
are. It is obvious that the relation < defines a partial order since it is also anti-symmetric.
It is also obvious that 1 and =~ are symmetric.

We make extensive use of the proposition below, directly derived from the definitions.

Proposition 2.1.1. Let Cy,Cy, C], CY, be classes of priority algorithms. If C7 < Cy and
Cy < C) and D(Cy,Cy) then D(CY,CY).

IN
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We also make use of all the other directly derived corollaries of proposition 2.1.1.
For example, lemma 2.2.6 states that D(M-PRIORITY,G-F-PRIORITY) which im-
plies that D(M-G-F-PRIORITY,G-F-PRIORITY), since M-G-F-PRIORITY <
M-PRIORITY. One more obvious proposition is the following.

Proposition 2.1.2. If C and C' are classes of priority algorithms then there exists a

unique R € {<,>,~, L}, such that C R C' (where > has the obvious definition).

We have studied all the possible relations < and L among classes of priority al-
gorithms, in the sense that all the others trivially follow from the transitivity of <.
The main results of this chapter are: (i) G-PRIORITY < PRIORITY and (ii)
M-F-PRIORITY < M-PRIORITY < G-PRIORITY.

From the paper of Borodin, Nielsen and Rackoff [4] it is known:

Lemma 2.1.3. M-G-PRIORITY ~ M-PRIORITY.

This result signifies that in case of a memoryless algorithm, greediness! is not a real
restriction. This result, as well as those that trivially follow from it, are the only ones
where greediness is not a restriction. The proof of this lemma is based on a (general)
simulation argument. Hence, this lemma holds for every variation of the Job Scheduling
problem considered here, such as the Interval Scheduling and for restrictions on the

number of processors.

Also note that in the case of one machine environments Interval Scheduling G-F-PRIORITY =~
M-G-F-PRIORITY (lemma 2.2.7)since in the case of G-F-PRIORITY for one ma-

chine environment an algorithm has no decision (thus, memory cannot help).

For the rest of this chapter, memoryless and adaptive priority algorithms determine
the job ordering by having access to all the information of a scheduled job (including its

identifier) and on which processor it has been scheduled.

'We use the term “greedy” so as to be consistent with the previous works. What greediness stands
for is that all the accepting decisions are made first.
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2.2 Relations between classes of priority algorithms

2.2.1 Partially dominated classes of priority algorithms - Main

lemmata

This sub-section concerns the main contribution of this chapter. The sub-section is
divided into two parts. The first part contains the “partial domination” results for the
case of one machine Interval Scheduling. The second contains lemmata that differentiate
among the cases of (i) Interval Scheduling on one machine, (ii) Interval Scheduling on
more than one machine and (iii) Job Scheduling. D is a two-place predicate. Note that
all the D-lemmata cannot be strengthen in the sense that removing a constraint from the
first place of the predicate or adding a constraint to the second place makes the relation

not to hold.

Partially dominated classes of priority algorithms for one processor Interval

Scheduling

In this part we present results concerning partially dominated classes of priority algo-
rithms, where we have the case of Interval Scheduling with proportional profit on one

machine (processor).

Remark 2.2.1. It is important to notice that the results for the partially dominated
classes, derived for the one processor case, can easily be extended in the case of any
(constant) number of processors m. In this chapter every proof that corresponds to a
partially dominated result, is constructive by giving an example of an algorithm and
a (specific) finite set of inputs. These results can be extended to the case of multiple
processors, by adding m — 1 jobs where each of them overlaps with every other job in the
input set considered in the initial proof. For all the results that follow we observe that
the simulation arguments hold for the arbitrary profit case whereas for the separation
D-relations it suffice to consider the proportional profit case; thus, making our results
stronger. Moreover, note that the results hold for every input size. We can pad the
separation examples with any number of non-overlapping intervals and the proofs remain

the same but minor technical details.

Remark 2.2.2. The following lemmata hold in case where a class of priority algorithms is
“partially dominated” by a priority algorithm from another class even when this “domi-

nation” happens for only one input instance. A small technical modification shows that
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w.r.t. these lemmata we can show a stronger argument where the “partial domination”
holds for an infinite number of input instances. In the proofs of the following lemmata
we just add any number of intervals not overlapping any other interval or job in the input

set.

When you read the proofs: We use the terms “accept a job” and “schedule a job”
interchangeably. In what follows the algorithms do not have a full description. We only
provide the part of the algorithm that it is of interest for our proof. Whenever, we have an
adaptive algorithm and we do not describe what happens to the determined order of the
jobs, then we implicitly mean that in the subsequent steps the order remains the same.
Whenever we determine a new ordering for the jobs then we do so only for the jobs of our
interest w.r.t. the proof. Finally, for two distinct jobs .J; = (i,7,d,p,w), J; = (j,r, d, p,w),
where ¢ and j are not equal, we may abuse the notation by writing J; = .J;, meaning that
the release, the deadline, the processing time and the profit (weight) of the two jobs are
all pairwise equal, but the identifiers differ.

One of the main characteristics of the Priority Algorithms model is the limited knowl-
edge of the future input elements (except what is implied by ordering information). All
the separation results of this document are based on a “promise” that given that specific
jobs have already been read, from the input, then specific subsets of the remaining jobs
will follow. The separation arises from the fact that the “stronger” class of algorithms

43

can identify this “promise” (for example, if it has memory) where the “weaker” cannot.
Gadgets used throughout the constructions of the proofs: All the D-relation
proofs presented in this chapter are constructive. Specifically, in order to prove D(C, Cs)
we give an algorithm in C, and a specific set of inputs S, such that every algorithm in
(' performs worse than the algorithm in C5, for at least one subset of S. We borrow
the computational complexity term “gadget” used in the proofs of the hardness results

to represent a similar but different notion of a repeated pattern.

e “Dummy jobs” and “switches”. A “dummy job” and a “switching-gadget” do not
have exactly the same concept. A “dummy job”, is a job (or interval) of negligible
profit with respect to the total profit of the inputs under consideration. Due to
the inherent lack of knowledge about the whole input, the presence or not of a
“dummy job” gives the algorithm a way of a priori knowing something about the
rest of the input jobs. For example, such a knowledge might give advantage to

an adaptive algorithm over all fixed priority algorithms. The reason is that an
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adaptive algorithm can use this knowledge to reorder the (initially) ordered jobs.
On the other hand, the “switches” are mainly used to give advantage to algorithms
with memory over algorithms without memory. Usually, the “switching gadget” is
a job or a set of jobs where their rejection or non-presence signals something about
the rest of the input set. Notice that a memoryless algorithm cannot distinguish
between the absence from the input, or presence and rejection of a job. In most of
the proofs where “switching gadgets” are used, we see a set of identical (apart from
their identifier) jobs that help the algorithm with memory to distinguish among
different states (of non-presence or rejection of the jobs) and therefore to gain a
specific knowledge on the input set. Intuitively, we use the switching gadget so as

to implement bits of memory.

e “Blockers”. These are jobs used in constructions where the algorithm has to sched-
ule the job by choosing its starting time or when the algorithm has to choose on
which processor to schedule a job/interval. The structure of the input set will be
such that scheduling “blockers” prevents other jobs from being scheduled. Such
gadgets are used in the proofs of the lemmata 2.2.5, 2.2.6 and of the theorem
2.3.5. The “blocking gadgets” are used together with other gadgets that provide
knowledge on the input set, such as “dummy jobs” or “switches”. The “blocking
gadgets” help a fixed priority algorithm to overcome part of its fixed structure, or

help a greedy algorithm to overcome part of its greediness.

The main contribution of this chapter are the following lemmata of partially domi-

nated classes. All proofs only use jobs that are intervals with proportional profit.
Lemma 2.2.1. D(Fixep-PRIORITY, MEMORYLESS-GREEDY-PRIORITY)

Proof. Let S = {Ji, Jo, J3, Ju}, where J; = (0,1), Jo = (1,3),J3 = (3,5), s = (2,5).
Here J; corresponds to a “dummy job”. Let A € M-G-PRIORITY be the following
algorithm, with initial ordering J; > Jo > J3 > Jy:

e If J; is in the input then schedule it and determine an ordering starting with Jy

and proceed greedily.
e Else, schedule greedily (that is .Jo, J; and then .J;).

Remark 2.2.3. Remark: Note that A is not optimal on every subset of S. This is a main

common characteristic of every lemma of this sub-section. In chapter 3 we show that
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classes of priority algorithms cannot be separated w.r.t. optimal priority algorithms; that
is, priority algorithms that are optimal on every subset of an input set. This is due to the
fact that if such an optimal algorithm exists then there also exists an optimal algorithm
from M-G-F-PRIORITY.

Let A € F-PRIORITY. If in the ordering of A’, J, or J3 precedes (has higher
priority than) J; then on input S’ = {Ji, Jo, Ju} (or on {Jy, J3, J4}) profit(A'(S")) <
3 < 4 = profit(A(S")). Else if J, precedes Jo and J3 then on input S" = {Js, J3, Ju}
profit(A'(S")) <3 <4 =profit(A(S)). O

Lemma 2.2.1 and the following lemma show that the classes M-G-PRIORITY and
F-PRIORITY are essentially incomparable.

Lemma 2.2.2. D(GREEDY-PRIORITY, FIXxep-PRIORITY)

PT’OOf. Let S = {Jl,JQ,Jg,J4}, J2 = (0, 2),J3 = (2,4),J4 = (1,4) and Jl = (2 - 6,2 +
€), for a fixed ¢ < 1 (J; is a “dummy job”). Consider the following algorithm A €
Fixep-PRIORITY, with ordering J; > J4 > Jo > Js:

e If J; is read from the input then reject it, and schedule greedily (schedule as many

intervals as possible).

e Else if J; is not the first interval read (that is, .J; is not rejected when one of

Jy, Ja, J3 is read) then reject Jy (if present) and schedule the rest greedily.

Let A" € G-PRIORITY. If J; is the first interval in the initial ordering then on
input S = {Jy, Jo}, profit(A'(S")) = 2¢ < 2 = profit(A(S")). If J, is the first interval in
the initial ordering then on input S = {Js, Ji}, profit(A'(S")) = 2 < 3 = profit(A(S")).
Similarly for J;. If the first interval is .J; then on input S, profit(A’(S)) = 3 < 4 =
profit(A(S)). O

Lemma 2.2.3. D(GREEDY-FIXED-PRIORITY, MEMORYLESS-FIXED-PRIORITY)

Proof. Let S = {.Jy, Ja, J3, Jy}, where J; = (0,1),J, = (1,3),J3 = (3,5), J, = (2,5). In-
tuitively, J; is a “dummy” job. Consider the following algorithm A € M-F-PRIORITY,
with fixed ordering J; > Jy > Jo > Js:

e If J; is present then schedule it, reject .J, (if present) and schedule the rest greedily.

e Else schedule greedily.
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Let A" € G-F-PRIORITY. If in the ordering of A’, .J, or .J; precedes .J; then on
input S" = {.Jy, Ju} (or on {J3, Ju}) profit(A’'(S")) = 2 < 3 = profit(A(S")). Else if J,
precedes Jy and J3 then on input S profit(A'(S)) =4 <5 = profit(A(S)). O

The comparison of PRIORITY and M-PRIORITY follows as a corollary of the
following lemma concerning the separation of G-PRIORITY and M-G-PRIORITY.
Recall that M-G-PRIORITY ~ M-PRIORITY.

Lemma 2.2.4. D(MEMORYLESS-GREEDY-PRIORITY,GREEDY-PRIORITY)

Proof. Let S = {.J1, Jo, J3, Jy, J5} such that J; = J, = (0,1) (Jq, Jo is a switching gadget)
and J; = (1,3),Jy = (3,5),J5 = (2,5). Let A € G-PRIORITY, with initial ordering
Jy > Jy > J3 > Jy > Js. A has the following description:

e [f J; and J5 are both present then determine the ordering J5 > J3 > Jj.
e Else schedule greedily keeping the initially determined ordering.

Let A’ € MEMORYLESS-GREEDY-PRIORITY. If J5 is the first interval in the
initial ordering of A’, then on input S" = {Jy, J3, Jy, J5}, profit(A'(S") =4 < 5 =
profit(A(S")). If J; is the first interval in the initial ordering then on input S' =
{J1, Jay J3, 5}, profit(A'(S")) = 3 < 4 = profit(A(S")). Similarly for .J,. Hence,
the first interval in the ordering is U € {.Ji, o}. Also, let U € {Ji, J,}\{U}. Con-
sider input sets containing U. Since A’ is memoryless whenever it reads U’ it rejects
it and the ordering remains as determined in the previous round. If J3 or J; precedes
in the new ordering Js then on input S' = {Ji, s, Js,J5} (or S = {J1, Jo, Ju, J5}),
profit(A'(S")) = 3 < 4 = profit(A(S")). Else, if J5 precedes J3 and J; in the new
ordering, then on input S’ = {U, Js, Jy, J5}, profit(A'(S")) = 4 < 5 = profit(A(S')). O

Lemmata that are different for the case of one processor Interval Schedul-
ing, for multiple machines Interval Scheduling and for the case of the Job

scheduling Problem

The following lemma corresponds to the case of m = 2 processors, interval scheduling

with proportional profits problem.

Lemma 2.2.5. D(MEMORYLESS-PRIORITY, GREEDY-FIXED-PRIORITY), for pro-

portional profit Interval Scheduling on two-machine environments.
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Proof. Say that we have 2 processors P, and P,. Let S = {Jy, Jo, Js, Jy, Js5, Js, J7, Js },
where: (i) J; = Jy = J3 = (0,1) are the switches, (ii) Jy = Js = (1,3), J; = J; = (3,5)
and Jg = (2,5) (the intervals .J;, and .J; are used as blockers). (see figure 2.1) Recall
that the blockers help us to overcome the fixed and the greedy nature of the algorithm
since we use them to reject Jg (if needed). Let A € G-F-PRIORITY with ordering
Ji>Jo>J3 > Ty >T5 > Jg > Jg > J;. Ais as follows:

J1 Ja Js
1 | | |
I I I 1
J2 Js
— |
I 1
J3 J6 J7

Figure 2.1: Graphical representation of the input for the proof of the lemma 2.2.5

Schedule greedily from {.J, Jo, J3}.

If all Jq,.J, and J3 are present then schedule Jy at P; and J5 at Ps.

Else schedule both J; and Js at P;.

Schedule the rest greedily.

Let A” € MEMORYLESS-PRIORITY. If A’ has at least the same profit as A on
every input, then on input S, A" must schedule all of Jy, J5, Js, J;. Assume that U €
{J4, Js, Js, J7} is the one read last through this run of A’. Since A’ is deterministic, when
running on S' = S\{U} A’ still rejects Jg (by scheduling all of {Jy, J5, Js, J; }\{U}). Let
U € {Ji,J5, J5} be the interval read last when A’ runs on S’ and thus U’ is the one not
scheduled. Since A’ is memoryless, on input S” = S"\{U'} A also rejects U and therefore
profit(A'(S")) =7 < 8 = profit(A(S")). O

The same lemma holds for the case of the Job Scheduling problem for one processor.
The following lemma appears to have a more complicated proof than the rest of this

chapter.

Lemma 2.2.6. D(MEMORYLESS-PRIORITY, GREEDY-FIXED-PRIORITY), for pro-

portional profit Job Scheduling on one-machine environments.
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J1 h1 Ja h2 Js
1 [ [ |
| LI L |
| J2 | V\/
J
6
I ....... H .............. I

Figure 2.2: Graphical representation of the input for the proof of the lemma 2.2.6

Proof. The representation of the input is in figure 2.2. This is the only proof of this
section where we do not use interval scheduling. In the figure three types of objects
are depicted: (a) {.J1,Jo, Js, Js, J5}, are proportional profit intervals. (b) Job Js is a
proportional profit job and its release and deadline times are depicted at the ends of
the dashed line. (c) {hy,hy} are the two holes. The holes are not jobs (or intervals).
They are “time intervals” lying between the intervals of (a). Notice that the job .Js has
processing time equal to the length of each hole. Regarding the processing time: .Ji, .Jy
have processing time 1, Jy, J5 have processing time 2, J3 has processing time 3, and Jg
strictly less than 1, say 0.9. Consequently the length of each hole is 0.9. Thus, J; and J,
are used as “switches” and Jgs as a “blocker”. Say that A € G-F-PRIORITY has job
ordering J; > Jy > Jg > J3 > Jy > J5, and works as follows:

e Schedule greedily from {.Jy, Jo}. (ii) If J; and J, are both present: schedule Jg in
hy (that is preventing J3 from being scheduled) and schedule the rest greedily.

e If J, or .Js is not present: schedule Jg in h; and the rest greedily.

Let A" € M-PRIORITY. If A" has at least the same profit as A on every input, then
on input S A’ schedules Jy, J5. Let U € {Jy, J5} be the one scheduled last by A’. Thus
on input S" = S\{U} A’ rejects J3 since it still schedules one among {Jy, J5}. Let U’ €
{J1, J2} be the rejected interval (among {.J;, Jo}) when A’ was running on S’. Since A’
is memoryless, on input S” = S'\{U'}, profit(A'(S")) = 3.9 < 4.9 = profit(A(S")). O

Things are different in case of proportional profit Interval Scheduling on one proces-
sor. An immediate corollary of the following lemma and the derived corollary
D(G-F-PRIORITY ,M-G-PRIORITY) is that M-G-F-PRIORITY ~ G-F-PRIORITY <
M-G-PRIORITY ~ M-PRIORITY. This corollary does not hold in the case of Job

Scheduling or Interval Scheduling on more than 1 processor.
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Lemma 2.2.7. MEMORYLESS-GREEDY-FIXED-PRIORITY ~ GREEDY-FIXED-PRIORITY,
in case of Interval Scheduling and m = 1. This directly implies that in case of Interval
Scheduling and m = 1, GREEDY-FIXED-PRIORITY < MEMORYLESS-PRIORITY.

Proof. This proof is a trivial simulation. Since A € G-F-PRIORITY, A cannot make
any decisions (because we have only one machine and intervals) based on the already
rejected and scheduled intervals. Hence, A € M-G-F-PRIORITY. O

2.2.2 Almost robust hierarchies according to memory, greed-

iness and adaptiveness criteria for the Job Scheduling
Problem

This section contains corollaries concerning the comparison of classes of priority algo-
rithms when only one characteristic (memory, greediness, adaptiveness) differs for every
pair of classes of priority algorithms. We focus on the more general case of the Job
Scheduling problem with multiple processors (see remark 2.2.1). A complete comparison
between classes of priority algorithms for the variations on the types of jobs and number

of processors can be found in section 2.2.3

Memory

In this section we provide the comparison according to the memory characteristic.

M-F-PRIORITY < F-PRIORITY
M-PRIORITY < PRIORITY
M-G-F-PRIORITY < G-F-PRIORITY
M-G-PRIORITY < G-PRIORITY

Table 2.1: Comparison of classes of Priority Algorithms, for the Job Scheduling problem

on multiple identical machines, according to the memory criterion.
From lemma 2.2.2 we have the following corollary.

Corollary 2.2.8. M-F-PRIORITY < F-PRIORITY

Proof. Tt is known that M-F-PRIORITY < F-PRIORITY. Because, M-F-PRIORITY <
M-PRIORITY =~ M-G-PRIORITY < G-PRIORITY, from lemma 2.2.2 we have
that D(M-F-PRIORITY, F-PRIORITY). O
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From the lemmata 2.1.3 and 2.2.4 we have the following corollary:
Corollary 2.2.9. M-PRIORITY < PRIORITY

Proof. M-PRIORITY < PRIORITY, M-PRIORITY ~ M-G-PRIORITY < G-PRIORITY
and G-PRIORITY < PRIORITY which implies that D(M-PRIORITY, PRIORITY).
O

Directly from lemmata 2.2.6 and 2.2.4 we have:
Corollary 2.2.10. M-G-F-PRIORITY < G-F-PRIORITY

Corollary 2.2.11. M-G-PRIORITY < G-PRIORITY

Greediness

G-F-PRIORITY < F-PRIORITY
G-PRIORITY < PRIORITY
G-M-F-PRIORITY < M-F-PRIORITY
G-M-PRIORITY ~ M-PRIORITY

Table 2.2: Comparison of classes of Priority Algorithms, for the Job Scheduling problem

on multiple identical machines, according to the greediness criterion.

Lemma 2.2.2 implies the following corollary.

Corollary 2.2.12. G-F-PRIORITY < F-PRIORITY
G-PRIORITY < PRIORITY

Proof. Notice that G-F-PRIORITY < G-PRIORITY and F-PRIORITY < PRIORITY.
O

Directly from lemma 2.2.3 we have:
Corollary 2.2.13. M-G-F-PRIORITY < M-F-PRIORITY

The above consequence makes clear some things concerning the proof of lemma 2.1.3.
Throughout the proofs we have made extensive use of lemma 2.1.3, because it appears to
be very powerful. It can be applied on every type of the scheduling problems considered

in this work, such as Interval or Job Scheduling on one or multiple processors. As we
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will see in section 2.3, it can also be applied to variations of the memoryless property.
Despite all this power, which intuitively relies on the (strong) simulation argument, it
cannot be extended for the case of the fixed priority algorithms. The reason is that this
simulation heavily relies on the fact that in the case of memoryless priority algorithms
we can compensate greediness for adaptiveness. When we loose this property it seems

plausible that no such further assertions can be made.

Adaptiveness

F-PRIORITY < PRIORITY
F-G-PRIORITY < G-PRIORITY
F-M-PRIORITY < M-PRIORITY
F-M-G-PRIORITY < M-G-PRIORITY

Table 2.3: Comparison of classes of Priority Algorithms, for the Job Scheduling problem

on multiple identical machines, according to the adaptiveness criterion

The lemma 2.2.1 implies the following corollary.
Corollary 2.2.14. F-PRIORITY < PRIORITY

Proof. 1t is known that F-PRIORITY < PRIORITY. From lemma 2.2.1 we have
D(F-PRIORITY, M-G-PRIORITY. Furthermore, M-G-PRIORITY < PRIORITY,
which implies D(F-PRIORITY, PRIORITY) O

From lemma 2.2.1 we have:

Corollary 2.2.15. G-F-PRIORITY < G-PRIORITY
From lemma 2.2.1 the following corollary holds.
Corollary 2.2.16. M-F-PRIORITY < M-PRIORITY

Proof. 1t is known that M-F-PRIORITY < M-PRIORITY. From lemma 2.2.1 we
have D(F-PRIORITY,M-G-PRIORITY) which together with M-F-PRIORITY <
F-PRIORITY and M-G-PRIORITY ~ M-PRIORITY implies that

D(M-F-PRIORITY, M-PRIORITY). O

A corollary of lemma 2.2.2 follows.
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Corollary 2.2.17. M-G-F-PRIORITY < M-G-PRIORITY

Proof. 1t is known that M-G-F-PRIORITY < M-G-PRIORITY. From lemma 2.2.1
it follows that D(F-PRIORITY, M-G-PRIORITY), and also M-G-F-PRIORITY <
F-PRIORITY, that is D(M-G-F-PRIORITY, M-G-PRIORITY) which proves the

corollary. m

Incomparable classes of priority algorithms

Up to this point we followed a systematic approach and we proved that the hierarchy
defined is most of the times robust. That is, adding adaptiveness, going from greedy to
non-greedy, and from memoryless to priority algorithms with memory, the corresponding
classes in most of the cases are “stronger”, w.r.t. algorithm profit on all input sets.
This study was restricted by looking at just one characteristic at a time. The question
is what happens in the case that we examine classes of algorithms where “mixtures”
of different characteristics are present. Considering all of the above relations between
classes of priority algorithms we provide a few examples concerning the comparison of
F-PRIORITY versus the G-PRIORITY and M-G-PRIORITY. In section 2.2.3we
provide a complete comparison between any two classes of priority algorithms, where
there are more things to notice about the incomparable class pairs.

From the lemmata 2.2.2 and 2.2.1 we have the following corollary.
Corollary 2.2.18. F-PRIORITY L G-PRIORITY

Also from lemma 2.2.2 we have the corollary: D(M-G-PRIORITY, F-PRIORITY)
(because M-G-PRIORITY < G-PRIORITY). Therefore, we also have the following

corollary.

Corollary 2.2.19. F-PRIORITY L M-G-PRIORITY ~ M-PRIORITY

2.2.3 Tables comparing classes of priority algorithms

This sub-section contains a comparison between classes of priority algorithms. We have
three cases: (i) job scheduling for any number of processors, (ii) interval scheduling for
a number of processors m > 2 and (iii) interval scheduling for one processor (m = 1).
Since, all the “D-relations” that hold for the job scheduling (m > 1) hold also for interval

scheduling with m > 2, then the same relations between priority algorithms classes hold
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in these two cases. Thus Table 2.4 can be used to compare any two classes of priority
algorithms for cases (i) and (ii) under the relations <, ~ and L. Table 2.5 concerns the
case of interval scheduling where m = 1. It is obvious that the general case is (i), that
is Job Scheduling with an arbitrary number of processors. Relation > is defined in the
obvious way. If the table entry (r, ¢) contains the relation R, the class which corresponds
to the r-th row is C' and the class which corresponds to the c¢-th column is C’, then we
read “C' R C" is true”. We have only filled the upper triangular part of the table; since
all the other relations trivially follow. Also notice that the column M — PR could be
missing as well, because M-PRIORITY ~ M-G-PRIORITY. PR is a short-name for
PRIORITY. In the tables, below each relation we write the lemmata used to derive the

relation.
F-PR G-PR G-F-PR M-PR M-F-PR | M-G-PR | M-G-F-PR
PR > > > > > > >
2.2.1 2.2.2 2.2.1 2.2.4 2.2.4 2.2.4 2.2.4
F-PR 1 > 1 > 1 >
221,222 | 222 |21.3221 213,222 221222 | 2.1.3,2.2.2
2.2.2
G-PR > > > > >
2.2.1 2.2.4 2.1.32.2.1 | 2.2.4,2.1.3 | 2.2.4,2.1.3
G-F-PR 1 1 1 >
2.2.1,2.2.5 | 2.2.3,2.2.5 | 2.2.1,2.2.5 | 2.2.5 or 2.2.6
or 2.2.6 or 2.2.6 or 2.2.6
M-PR > R >
2.2.1 2.1.3 2.2.1
M-F-PR < >
2.1.3,2.2.1 2.2.3
M-G-PR >
2.2.1

Table 2.4: Comparison between classes of priority algorithms for the cases of (i) the,

general, Job Scheduling (m > 1) and (ii) Interval Scheduling where m > 2 problems
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F-PR | G-PR | G-F-PR | M-PR M-F-PR | M-G-PR | M-G-F-PR
PR > > > > > > >
2.2.1 2.2.2 2.2.1 2.2.4 2.2.4 2.2.4 2.2.4
F-PR s > s > 1 >
2.2.1,2.2.2 2.2.2 2.1.3,2.2.1 | 2.1.3,2.2.2 | 2.2.1,2.2.2 | 2.1.3,2.2.2
2.2.2
G-PR > > > > >
2.2.1 2.2.4 2.1.3,2.2.1 | 2.2.4,2.1.3 | 2.24,2.1.3
G-F-PR < < < ~
2.2.1,2.2.7 | 2.2.3,2.2.7 | 2.1.3,2.2.1 2.2.7
2.2.7
M-PR > Y >
2.2.1 2.1.3 2.2.1
M-F-PR < >
2.1.3,2.2.1 2.2.3
M-G-PR >
2.2.1

Table 2.5: Comparison between classes of priority algorithms for the one processor,

proportional profit, interval scheduling
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2.3 Memory and Priority Algorithms

We begin this section with the following obvious fact.

Fact 2.3.1. Say that A € C, where C is a class of priority algorithms with memory.
Then, there exists an algorithm A’ which, on every input, has the same profit as A and it
15 realized through a function that depends only on the current sets of the scheduled and

rejected jobs and can remember all the information of a job.

Proof. Given an algorithm, the job .J and the sets of scheduled and rejected jobs at
step 7, we can retrieve the order in which the jobs were read from the input. Since the
algorithm is deterministic, this can be trivially done by taking the initial priority function
and checking the context of these sets. Then we inductively proceed by simulating the
computation of A and by this simulation we can “retrieve” the context of the memory

and see what decision A would take. O

2.3.1 Variations of the memoryless restriction

In this sub-section we consider variations of the memoryless property, regarding the
information that an algorithm can “remember” about a scheduled job. Our treatment
on this subject is far from being complete. We define some natural variations of the
memoryless restriction and we give a few lemmata showing that these variations result
in priority algorithms that are not of the same power.

Up to this point we considered as memoryless, priority algorithms that do not base
their decisions on the rejected jobs. We made the assumption that a priority algorithm
(even a memoryless one) can retrieve all of the information from each scheduled job ,
that is the processor where it is scheduled, its starting time and (id,r,d,p,w). Now
we extend this study by restricting the things that a memoryless algorithm can retrieve
from a scheduled job. In what follows we use the term “tag” to refer to a job (r,d, p, w)

without an integer identifier.

1. Memoryless (Mg, or M) with integer identifiers. This is the model we considered
in this chapter up to this point.

2. Memoryless with tags (M,gs). For each scheduled job the algorithm can read the
processor where it is scheduled, its starting time, its release, deadline and processing

time and as well as its profit (weight).
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3. Memoryless without tags (Myeqr). This is the weakest model since the only thing
that we can retrieve from each scheduled job is its starting and its processing time

and the processor where it is scheduled.

Thus we introduced two new types of memoryless algorithms. We now describe a
new type of the memoryless restriction, called M,,,. The initial model is modified by
making decisions on the ordering at the end of each iteration. M, is a modification
of Myeqr where the algorithm can also re-order the input elements after the rejection of
a job. The algorithm, temporarily, remembers all the information of the currently read
job. We use this model only for the case of the memoryless algorithms. Our treatment is
not going to be as thorough as in the previous sections. With this plausible modification
in the model, proposition 1.5.1 does not hold.

In what follows we demonstrate some cases where the above mentioned definitions, on
the memoryless property, define classes of algorithms that are of different power. We do
not give full proofs of the lemmata as the proofs are pretty-similar to the ones presented
in the previous sections. It’s useful to notice that for any class (with memory) C' of
priority algorithms Myeqr — C < Mgy — C < M — C. The following lemma proves that
the memoryless fixed priority algorithms with tags dominate over the weak-memoryless
fixed priority algorithms. All of the following lemmata hold for the proportional profit

case, where the machine environment consists of one processor.

Remark 2.3.1. The constructions of the following lemmata are not based on the “gadgets”
used in the previous sections. The arguments are still of the same flavor. We use the
extra information provided by one memoryless type in order to construct algorithms that

use such information so as to “understand” what follows in the input set.
Lemma 2.3.2. D(Myear — F — PRIORITY, M., — F — PRIORITY).

Proof. Let S = {Jy, Jo, J, Js, Jy, J5} where J; = (0,1,1,1), Jo = (1,2,1,1), J = (0,2,1,1),
Js=1(2,4,2,2),Jy = (4,6,2,2) and J5 = (2,5, 3,3). Let also A € M,y —F—PRIORITY ,
with initial ordering J; > Jo > J > J5 > J3 > J;. A is as follows:

e Schedule greedily from {.J, J5, J}, where J is scheduled at the earliest available

time.

e If only one from {Ji, Js, J} is scheduled or if (J;,.J2) is scheduled, then reject J;
and schedule the rest greedily.
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e Else schedule greedily.

Let A" € Myear— FIXED—PRIORITY . We show that .J;, Jo, J have higher priority
than J3 and J; and J5. Suppose that U € {J;, Jo, J} has lower priority than J3 or J, or
Js. (a) J3 has higher priority than Jy, J5. On input {U, Js, J4, Js} A" accepts {U, J3, Jy4}.
If we remove Jy and U, A’ still accepts J3 (since J3 is the first job that A’ reads) and thus
it performs worse than A. (b) Similarly for .J;. (¢) J5 has higher priority than J;, J;. On
input {J5} A’ gains zero profit (where A accepts .J;).

Here we assume that .J;, Jo, J are the jobs of higher priority and since A’ is in M ,eqr —
FIXED — PRIORITY, on inputs Sy = {.J1, Jo, J3, Ju, Js} and Sy = {J1, J, J3, Jy, J5},
A’ takes the same decisions regarding .Js, Jy, J5 and schedules {.J3, J4}. If we remove from
Sy the interval scheduled last among {.J3, J4} then A’ still rejects J5 (since it accepts the
one scheduled first among {.J3, J4}). Thus A’ gains less profit than A. O

Using the same proof techniques, one can show the corresponding thing for M and
Mg

Lemma 2.3.3. D(M;,, — F — PRIORITY, M — F — PRIORITY)

Proof. Let S = {.J1,Js,J3, Jy, Js}, where J; = (1,0,1,1,1), Jo = (2,1,2,1,1), J =
(3,1,2,1,1), J3 = (5,2,4,2,2), J, = (6,4,6,2,2) and J; = (7,3,6,3,3). Let A €
M — F — PRIORITY), with initial ordering J; > Jy, > J > Js > J3 > J;. The

description of A follows:
e Schedule greedily from {.J;, Js, J}.

e If only one from {Ji, Js, J} is scheduled or if (J;,.J2) is scheduled, then reject J;
and schedule the rest greedily.

e Else schedule greedily.
The rest of the proof is similar to the proof of the previous lemma. O

From lemmata 2.3.2 and 2.3.3 we have that Myeqr — F'— PRIORITY < My — F —
PRIORITY < M — F — PRIORITY, which shows that (in general) different types of
the memoryless property define classes of algorithms that can achieve different profits.
In what follows we provide an indication that the M,,.,, property defines algorithms that
can perform better than the previous types. Observe that for any class C' of priority

algorithms with memory M eor — C' < Mo — C.
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Lemma 2.3.4. D(M — PRIORITY, Myer, — G — PRIORITY)

Proof. All the jobs in this proof are intervals of proportional profit. Let S = {J;, Jo, J3, J4}, J1 =
(2—€,2+¢€), for a fixed € < %,Jz =(0,2),J3 =(2,4),J, = (1,4). Let A € Mpeyw — G —
PRIORITY , with initial ordering J; > J, > Jy > J3 and the following actions:

e If J; is read on the input then reject, determine the following ordering for the rest

of the jobs Jy > J3 > J, and accept greedily.
e Else accept greedily.

Let A" € M — PRIORITY. If the first job, in the ordering of A’, is J, and A’
accepts it, then on input S" = {Jy, Jo}, profit(A'(S")) = 2 < 3 = profit(A(S")). If it
rejects it then on input {.J,} it has zero profit, where A does not. Similarly for J;. If
Jy is the first job in the ordering and A’ accepts it, then on input S, profit(A'(S)) =
3 < 4 = profit(A(S)). If it rejects it then on input {J;}, A" has zero profit. Thus
J; must be the first job in the input. If A’ accepts it then on input S’ = {J;, J»}
profit(A'(S") = 1 < 2 = profit(A(S")). If A’ rejects it then it cannot determine a
new ordering and thus the same argument as the previous one can be applied for the

remaining {.Js, Js, J4} jobs about the second job in the initial ordering. O

Remark 2.3.2. If we consistently replace the memoryless property by the two weaker
memoryless properties (Myeqr and M,,) then the lemmata 2.2.1-2.2.7 still hold. We
believe that the same thing holds for the M, property also.

2.3.2 Robust memory hierarchies

In this section we define the bounded memory notion which implies a natural memory

hierarchy that we show to be robust most of the times.

Bounded memory model - Bounded memory hierarchy.

Definition 2.3.1. We write for a priority algorithm A, that A € M (k) — C where C' is
a class of priority algorithms with memory, and we mean that A makes its (irrevocable)
decisions by remembering any set of rejected jobs of cardinality less than or equal to
k € ZZ° Each decision of A to store a job in its memory is also irrevocable; that is,

when A stores a rejected job this job cannot be removed /updated later on.
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Remark 2.3.3. Looking at the proof of lemma 2.2.2 we see that lemma 2.1.3 cannot be ex-
tended even when we have memory for only one rejected job. Actually, the same proof (as
the one for lemma 2.2.2) shows that D(M(1)-GREEDY-PRIORITY ,M(1)-Fixep-PRIORITY).

Notice that in definition 2.3.1 the algorithm is allowed to decide whether it will store
a rejected job in its memory or not. The following theorems are proved (even) for the
weaker case where the algorithm (on the right hand side of the relation D) stores, without

choice, the first up to k, so far rejected jobs.

Theorem 2.3.5.

(i) Let S be a set of intervals. The machine environment consists of one processor and C
stands for any one among { FIXED-PRIORITY, GREEDY-PRIORITY, PRIORITY}.
(ii) Let S be a set of jobs and we have a machine environment of m > 1 identical proces-
sors, or S be a set of intervals and we have a machine environment of m > 2 identical pro-
cessors. Let C stand for one among { GREEDY-FIXED-PRIORITY, Fixep-PRIORITY,
GREEDY-PRIORITY, PRIORITY}. Given (i) or (ii) we have that M(k+1) — C >
M(k)—C.

A corollary of lemma 2.2.7 is M(k)-G-F-PRIORITY ~ G-F-PRIORITY for the
one machine environment and every k € Z2° Theorem 2.3.5 is a corollary of the three

following lemmata (also recall Remark 2.2.1).

Lemma 2.3.6. For the two machine environment Interval Scheduling,
D(M(k)-PRIORITY ,M(k + 1)-G-F-PRIORITY).

Proof. We do not give the full proof of this lemma since it is very similar to the proof
of lemma 2.2.5. Say that the two processors are P, and P,. Let S = {J;,..., J; ,} U
{1, Jay J3, Js, J5} be a set of intervals where (i) J;, = J;, = ... = J;,,, = (0,1) are the
switches, (ii) J; = J; = (1,3), Jo = Jy = (3,5) and J; = (2,5), (iii) the jobs .J; and J,
are used as blockers. Let A € G-F-PRIORITY with initial ordering .J;, > .J;, > ... >
Ji o> J > Jy > T > J3 > Jy. Ais as follows:

k+3

e Schedule greedily from {.J; ,...,J;, .}

o Ifall J;,...,J

Tk+3

are present then schedule J; at P; and J, at Ps.
e Else schedule both J; and J, at P;.

e Schedule the rest greedily.
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Since the algorithm A can store all possibly rejected intervals and any algorithm with
memory bounded to k rejected jobs cannot, this proof follows in a very similar way as

the proof of lemma 2.2.5. O

Lemma 2.3.7. For the one machine environment Job Scheduling,

D(M(k)-PRIORITY ,M(k + 1)-G-F-PRIORITY).

Proof. This proof is also very similar to the proof of lemma 2.2.6. Instead of having 2
intervals of the same release and deadline times, we now have k + 2 intervals of the same
form. The rest of the proof is similar to the one of lemma 2.2.6 with all the modifications

made in the obvious way. O
Actually, we can take lemmata 2.2.5 and 2.2.6 as corollaries of the above two.

Lemma 2.3.8. For the one machine environment Interval Scheduling,
(i) D(M(k)-PRIORITY ,M(k + 1)-F-PRIORITY),
(i) D(M(k)-PRIORITY ,M(k + 1)-G-PRIORITY).

PT‘OOf. (1) Let S = {Ji17Ji2a---aJik+2} U {Jl,JQ,Jg}, Where Jil = JZ = ...,= Jik+2 =

(0,1), J; = (1,3), J» = (3,5), J3 = (2,5). Let A € M(k+1)-F-PRIORITY with

ordering J;, > J;, > ...,> J;, ., > J3 > J; > Jy and the following description:

k+2

e Schedule greedily from {.J;,, Ji,, ..., Ji, ., }-

o If all Jila Jiz, Caeey Jz
greedily

.+» are present then reject .J3 (if present) and schedule the rest

e Else schedule greedily.

Let A" € M(k)-PRIORITY. If A’ has at least the same profit as A then on input S
schedules J € {J;,, ..., Ji,,,}, Ji and Jy (thus rejecting J3). Say that U € {Jy, Jo} is the
one scheduled last (among Ji, J5). On the set S" = S\{U}, A" schedules the remaining
one from {Jy, Jo}. Thus, J; is rejected. In the run of A" on S’; there exists at least
one interval J' € {J;,, Ji,,..., Ji,,} rejected and not stored in memory. Since A’ has
memory for only k rejected jobs it schedules the same jobs on S’ and on S” = S"\{.J'}.
Thus, profit(A'(S")) = 3 < 4 = profit(A(S")).

We show D(M(k)-PRIORITY ,M(k + 1)-G-PRIORITY) using a similar argument.
The algorithm A is modified so as to reorder jobs (giving J3 low priority) instead of re-

jecting Js. O
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Theorem 2.3.5 holds also for the bounded memory model where the algorithm is
allowed to update its memory context. In the next section we show a separation for such
memory models between classes of algorithms having £ 4+ 1 memory bits and algorithms

having k¥ memory bits, for every k € Z=2°.

Bounded memory with updates. We consider a modification of the bounded mem-

ory model for priority algorithms for the Job Scheduling problem.

Definition 2.3.2. Let C' be a class of priority algorithms with memory. We write M,(k)-
C to denote the class of priority algorithms C' where an algorithm from this class has &
memory bits. In every round an algorithm from M;(k)-C can update any number of its

memory bits.

The same theorem, as in the irrevocable storage memory management model, holds

also for this memory model.

Theorem 2.3.9.

(i) Let S be a set of intervals. The machine environment consists of one processor and C
stands for any one among {FIXED-PRIORITY, GREEDY-PRIORITY, PRIORITY}.
(ii) Let S be a set of jobs and we have a machine environment of m > 1 identical pro-
cessors or S be a set of intervals and we have a machine environment of m > 2 identical
processors. Let C' stand for one among {FIXED-PRIORITY, GREEDY-PRIORITY,
GREEDY-FIXED-PRIORITY, PRIORITY}. Given (i) or (ii) we have that My(k +
1) = C > My(k) — C.

We show this theorem by modifying the job sets used in the proofs of lemmata 2.3.6,
2.3.7, 2.3.8. We present the proof only in the case of the fixed-priority D-relation. The
others follow in the obvious way (by modifying appropriately the proofs of lemmata 2.3.6,
2.3.7, 2.3.8).

Lemma 2.3.10. D(M,(k)-PRIORITY ,M,(k + 1)-FIXED-PRIORITY)

Proof. Fix k € Z2° Consider 2¥*2 intervals of identical release and deadline time.
Let S" = {J1,...,Jyes2}, S" = {J,J",J} and S = S"US", where J, = J, = ... =
Jorr2 = (0,1), J' = (1,3), J' = (3,5), J = (2,5). Consider the following algorithm
A€ My(k + 1)-FIXED-PRIORITY with ordering .J; > Jo > ... > Jori2 > T > J' > J":
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e Accept greedily from S’. Use the &£+ 1 memory bits to store the value of a counter.
When rejecting an interval from S’, if the decimal value of the counter is less than

2k+1 _ 1 then increase the counter by 1.
e If the counter is 27! — 1 then reject J (if present) and schedule the rest greedily.
e Else schedule greedily.

Note that A rejects J if the input set contains at least 281 intervals from S’ (one
scheduled interval and at least 2¥*! — 1 rejected). Regarding a round in a run of an
algorithm on a subset of S, we say that the algorithm is in a “valid state” if (a) there
are at least 2¥*! intervals read from S’ or (b) the input contains less than 2F*1 intervals
from S’. We show that every algorithm A’, having at least the same profit as A is in
valid state before reading an interval from S”. Suppose the contrary. That is, A’ reads
an interval from S” having read less than 2**! intervals from S’ and the input contains
at least 28! intervals from S’. Say that the input contains S C ', where |S| > 2F+1.
Say that S’ C S is the set of intervals considered so far by A’. If A’ reads J and
rejects it then profit(A'(S"U {J})) < 1 < 4 = profit(A(S' U {J})). If A" schedules
J then profit(A'(SUS")) < 4 < 5 = profit(A(S U S")). If A’ reads J' and rejects
it then profit(A'(S'U{J'})) < 1 < 3 = profit(A(S’ U {J'})). If A" schedules J' then
profit(A'(S"U{J,J'})) < 3 < 4=profit(A(S"U{J,J'})). Similarly for .J".

Consider a run of A" € M,(k)-PRIORITY. We call as “memory state of A’ in a
round” the context of the time interval (0, 1) and the £ memory bits. We argue that if A’
has two identical memory states and it is not in a valid state then there exists an input
where A’ gains less profit than A. Consider a run of A" on S! C S’ where there exists a
memory state M which appears twice and A’ is not in a valid state. Say that between the
two occurrences of M the intervals {.J;,...,J/ .}, m > 1 have been read. Extend S! by
adding intervals from S’ (not considered yet). Say that S’ C Sj C ', |Sj| = 28+ is such
aset. If A’ has at least the same profit as A (on every input) then on Sy = S;U{.J’, J", J},
A’ rejects J. Let U € {J', J"} be the one scheduled last among {.J', J"}. A" also rejects
J on Sy = S;\{U}. M occurs twice and therefore on S3 = So\{.J;,...,J.,}, A’ also
rejects J. Thus, profit(A'(S;)) = 3 < 4 = profit(A(Ss)). Therefore, there exists an
input where A’ gains less profit than A.

Fix an § € §', |S| = 25*1. Consider the run of A’ € M,(k)-PRIORITY on S U S".
If A’ has the same profit as A, then when reading the 2! intervals (from 5") it updates
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its memory each time it reads one interval. During this process A’ does not have two
identical memory states. Since we have 2¥*! intervals and only 2¥ memory states this is

not possible. O

Remark 2.3.4. We do not consider memory models where the priority algorithms store
and update job descriptors in “memory cells”. There are some questions that someone
may ask for such a model. Which job descriptors do we allow to store in memory? Can
a job descriptor appear more than once in memory? Thus, it seems hard to define a
natural memory model of this type. Furthermore, considering an instance of the memory
context as a string we observe that the memory alphabet depends on the jobs in the
input. Therefore, the memory size (w.r.t. a fixed alphabet) is not constant and thus the

definition of such memory models seems even less natural.



Chapter 3

Complexity of languages related to
the optimality of Priority
Algorithms

The field of Priority Algorithms is motivated by the derivation of unconditional lower
bounds and it does not study the problems with respect to the complexity classes they
belong to. In this chapter we study the complexity of languages related to Priority
Algorithms in the classic complexity theoretic context; that is, we derive containment and
hardness results for such languages. From this perspective the recognition complexity of
problems related to Priority Algorithms seems to be orthogonal to the research direction
of Priority Algorithms themselves.

Our main goal is to characterize optimal inputs for priority algorithms and to study
the complexity of deciding such optimal sets. That is, we want to look at questions
similar to the research conducted in other characterizations of optimal greedy algorithms
such as the matroids, greedoids and matroid embeddings. We study the complexity of
two main types of questions. We want to decide whether a given priority algorithm is
optimal, or whether there exists an optimal priority algorithm for a given finite set of jobs
or intervals. Recall that given a set of jobs S, “optimal priority algorithm” (w.r.t. S)
means an algorithm that is optimal on every subset of S. The main results of this chapter
are: (i) given a finite set of intervals we can decide within polynomial whether a given
greedy-fixed priority algorithm (for the one machine environment) is optimal and (ii) the
problem of deciding, given a finite set of intervals, whether there exists an optimal priority

algorithm (for the one machine environment), is also in P. In general, the definition of

41
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the first type of question requires us to agree on a specific way of describing a priority
algorithm. This fact makes the first type of question less elegant and apparently less
interesting than the second one. For the case of Interval Scheduling on one processor,
it is natural to consider that a greedy-fixed priority algorithm is fully described by a
total ordering on the finite set of intervals. This is the only case where a question of the
first type has an elegant definition. When the algorithm is allowed to make decisions,
if we have jobs or more than one processor, then we have to describe a set of actions.
In this case the problem does not seem to have an elegant definition, since we have to
agree on a specific encoding of the algorithm; for example, the algorithm is realized by an
efficient model of computation (say through a logspace bounded Turing Machine). More
importantly, it is easy to observe that in this case the problem has trivial answers! and

thus we do not provide any results concerning such languages.

The other technical contribution of this chapter concerns the study of optimal priority
algorithms on sets of jobs and on multiple-machine environments. We derive normal

forms and properties for optimal priority algorithms on such sets.

This chapter is organized as follows. In section 3.1 we provide the definitions of the
languages we are studying. Section 3.2 states one of the main theorems used throughout
this chapter, by giving a characterization of optimal priority algorithms. We use this
characterization so as to state a polynomial time algorithm for deciding whether a given
greedy-fixed algorithm for the Interval Scheduling problem on one processor is optimal
on a given finite set of intervals. Section 3.3 discusses a characterization of finite sets of
intervals that permit optimal priority algorithms for one-machine environments. In this
section we give a polytime algorithm for the related problem and we show that if such an
optimal algorithm exists then there also exists an optimal algorithm in MEMORY LESS-
GREEDY-FIXED-PRIORITY. That is, in contrast to our separation results in chapter
2, it appears that it is not possible to separate classes of optimal priority algorithms.
In section 3.4 we strengthen our previous results by showing that the languages of our
main interest are in uniform NC? and thus unlikely to be P-hard (w.r.t. NC' or many-
to-one logspace reductions) unless P = U, — NC?. In section 3.6 we show that deciding
whether a greedy-fixed priority algorithm is optimal on a set of intervals of equal profit is

in uniform AC° (that is, FO[<, bit]). In section 3.7 we show the N L-completeness for the

'For example, if the priority algorithm is realized by a logspace bounded Turing Machine then we
can show that problem is N P-complete even when the input set has intervals and only one job.
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Interval Scheduling problem where the intervals have profits bounded by a polynomial
in the number of intervals. We conclude by mentioning some open problems in this
area (section 3.9). In section 3.8 we study optimal priority algorithms on sets of jobs.
In section 3.8 we show normal forms and properties for optimal priority algorithms.
Although, the number of optimal priority algorithms on sets of distinct profit jobs may
be super-exponential w.r.t. the cardinality of the set, we show that every optimal priority
algorithm on such sets schedules the same set of jobs. We also show that if a set admits
an optimal priority algorithm then it also admits a memoryless-greedy-priority algorithm

and we derive an invariant for sets of jobs of arbitrary profit.

3.1 Definitions

We presume the existence of a finite alphabet ¥ where the languages are subsets of ¥*.
Unless stated otherwise, the language corresponding to the problem is structured in the
obvious way, where all numbers are represented in binary. Whenever we write the term
“optimal algorithm for a given finite set of jobs” we mean a priority algorithm that is
optimal on every subset of the input set. In the same way whenever we write “optimal
set”, we refer to a set of intervals where there exists a priority algorithm which performs
optimally on every subset of this set. The following languages can be divided into two
categories: (a) problems where the priority algorithm has a “simple” encoding and (b)
problems where the priority algorithm is not part of the input. By the term “simple”
we mean that the description of the algorithm is just a total ordering of the given set
of intervals. Thus, in this category there are algorithms only from the GREEDY-FIXED

class for Interval Scheduling on a single processor.

Given a priority algorithm, with “simple” description, and a finite set of jobs

decide whether the algorithm is optimal

We are restricting to the case of interval scheduling on single machine environments.
In this case the algorithm is determined only by a fixed ordering on the given set of
intervals. The language corresponding to the following problem (defined in Garey and
Johnson style) leads to some interesting complexity results and motivates our further

study.
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Problem 1. NON-OPT-GF-INTERVAL(m = 1)

Instance: Say that S is a finite set of n € Z* intervals S = {Ji,...,J,} and the
description of an algorithm A € G-F-PRIORITY is determined by a total ordering T
on S.

Question: Does there exist a subset S C S where A is not optimal on S'?

In order to avoid overwhelming the reader with definitions we just say that all the
relevant languages follow the same notational pattern as the one mentioned above. Fol-
lowing, the same pattern as previously, NONOPT-GF-INTERVAL is the same language as
in problem 1 with the difference that we do not restrict the machine environment to one
processor. In this case the number of identical processors is part of the instance. When
we have jobs instead of intervals, we write NONOPT-GF-GENERAL.

The following language can be view as a problem where every interval is of unit profit?.

Problem 2. NONOPT-GF-INTERVAL-EQUAL-PROFIT(m = 1)

Instance: Say that S is a finite set of n € Z* intervals S = {Jy,...,J,} of the same
profit. The description of an algorithm A € G-F-PRIORITY is determined by a total
ordering 7" on S.

Question: Does there exist a subset S’ C S where A is not optimal on S'?

Given a finite set of jobs decide whether there exists an optimal priority

algorithm

To simplify our study we restrict to the case of machine environments consisting only of

one machine.

Problem 3. EXISTS-OPT-GENERAL(m = 1)
Instance: Say that S is a finite set of n € Z* jobs S = {.J1,..., J, }.

Question: Does there exist a priority algorithm that it is optimal on every subset of S?

It is easy to see that the general problem can be decided within time O(2"), where n
is the length of the input; that is EX1STS-OPT-GENERAL(m = 1)€ ESPACE.

We restrict our attention to problems that only involve intervals in their inputs and
the scheduling is done on a single machine. These problems appear to have interesting

and somehow counter-intuitive associated complexity results.

2We already know that there exist optimal priority algorithms for this problem. The question here
concerns whether a given priority algorithm is optimal.



CHAPTER 3. THE COMPLEXITY OF DECIDING OPTIMALITY 45

Problem 4. EXISTS-OPT-INTERVAL(m = 1)
Instance: Say that S is a finite set of n € Z* intervals S = {Jy,..., J,}.
Question: Does there exist a priority algorithm A € PRIORITY, where A is optimal

on every subset S’ C S?

Restrictions on the values of the profit

We consider restrictions on the size of the numbers involved in the problem. If we restrict
the values of the profits to be a polynomial in the number of intervals or jobs then we

get the following variations.

Problem 5. POLY-NONOPT-GF-INTERVAL(m = 1)

Instance: Say that S is a finite set of n € Z* intervals S = {J1,...,J,}, where the
value of the profit of each interval is a polynomial in n. The description of an algorithm
A € G-F-PRIORITY is determined by a total ordering 7" on S.

Question: Does there exist a subset S’ C S where A is not optimal on S'?

Problem 6. POLY-EXISTS-OPT-INTERVAL(m = 1)

Instance: Say that S is a finite set of n € Z* intervals S = {J1,...,J,}, where the
value of the profit of each interval is a polynomial in n.

Question: Does there exist a priority algorithm A € PRIORITY, where A is optimal

one every subset S’ C S7

3.2 Characterizations of optimal Priority Algorithms

for Interval Scheduling

The following lemma characterizes non-optimal greedy-fixed priority algorithms for one-

machine environments.

Lemma 3.2.1. Say that the machine environment consists of one processor, A € G-F-PRIORITY,
and let S be a set of intervals. A is not optimal iff there exists an interval J € S and

there exists a T C S, where all of the following are true:
1. every interval in T overlaps J

1. every two intervals in T do not overlap each other
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iii. profit(T) > profit({J})
w. for all J' € T, J has higher priority than .J'.

Proof. (=) We prove the contrapositive argument. More precisely, let A be a priority
algorithm. Assume that for all J € S and for all T C S, if (i), (ii) and (iv) hold
then profit(T) < profit({J}. Then we want to show that A is optimal. The following
argument is based on a well-known “exchange lemma” type of argument, used to prove
optimality for greedy algorithms. Fix an arbitrary set S" C S. We do induction on the
predicate which asserts that the first k& steps the algorithm, on S’, results in a set of
scheduled intervals S;, which can be extended to an optimal schedule for S’. For & = 0, it
trivially holds. Assume, that it holds for £ = m; we want to prove that it holds for m-+1.
Let Sy = {Ji,, Jin, - -, Ji,}. Let OPT be an optimal schedule for S’ that extends S,,. If
Jm+1 overlaps any interval from S, then the assertion is trivially true. If J,,,, € OPT
then it is also true. Suppose that J,.; does not overlap any interval from S, and
Jmi1 € OPT. Let T = {J;,,...,J;,} be the set of intervals in OPT that overlap Jy, 1
and no two intervals in 7" overlap each other. Obviously, no interval from 7" can overlap
any interval from S, and therefore every interval from 7" has lower priority than J,, 1.
Thus, profit(T) < profit({Jm,+1}). Hence, the schedule OPT" = OPT\T U {J,11} is
also of optimal profit.

(<) is even more straightforward. If there exists an interval J € S and T' C S, where
any two intervals in 7" do not overlap each other, and profit(T) > profit({J}) and J
has a higher priority than every J' € T which overlaps J, then on input {J} US" A is

obviously not optimal. O

The above lemma specifies a necessary and sufficient condition for a G-F-PRIORITY
(in one-machine environments) to be non-optimal. Now, the following theorem is straight-

forward.

Theorem 3.2.2. NONOPT-GF-INTERVAL(m = 1) € P (and thus OPT-GF-INTERVAL(m =
1)eP).

Proof. Tt is well-known that given a set of intervals we can compute within polynomial
time an optimal schedule. This can be achieved with a well-known application of a
Dynamic Programming technique. For every interval in the input set we compute (within

polynomial time) the set S’ of its overlapping intervals which have lower priorities. Then
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we compute (in polytime) the optimal schedule for S’ (using dynamic programming) and
we compare it with the profit of the interval we have initially considered. If the optimal
schedule (of these intervals) is greater than the interval under consideration we accept.
If we have not accepted, we choose the next interval in the input and we repeat. At
the end, if all intervals have been considered (and we have not accepted) we reject. The

algorithm works in (deterministic) polynomial time. O

In section 3.4 we show a stronger result, that is NONOPT-GF-INTERVAL(m = 1) €
U, — NC?.

Remark 3.2.1. Using lemma 3.2.1 we can show that POLY-OPT-GF-INTERVAL(m = 1) €
N L. Within logarithmic space we can add numbers and compare sums of numbers, when
the numbers to be summed are indicated in the input (or they can be determined “effi-
ciently”). Obviously when performing these tasks, one should not write in the working
tape any of the numbers (or a sum of numbers). When the numbers have values which are
at most a polynomial in the cardinality of the given set, it is also trivial to decide the cor-
responding variation of the SUBSET —SUM or the PARTITION problem? within non-
deterministic logarithmic space. The restricted variation of OPT-GF-INTERVAL(m = 1)
can be decided easily within non-deterministic logspace. This cannot be done by a

“global” guess as depicted in the example in figure 3.1. Instead of making a “global

J1 J2 Jk-1 Jk

k=0(n)

Figure 3.1: J has higher priority than its overlapping jobs. The sum of the profits of
Ji, ..., Ji is greater than the profit of .J, but excluding one among .Ji, ..., J; results in a

total profit which is less than the profit of J.

guess”, the algorithm guesses one by one the overlapping intervals and stores the sum

3SUBSET — SUM and PARTITION are well-known N P-complete problems and thus unlikely to
be in NL. SUBSET — SUB contains encodings of a set of integers and a distinct integer, such that
there exists a subset of the elements of this set where the sum of its elements equals to the distinct
number. A string belongs to PARTITION, if it is the encoding of a set of integers, such that there
exists a partition of this set into two sets where the sum of their elements are equal.
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of their profits in the working tape (since the numbers have “small” values). Hence,

PoLy-OpT-GF-INTERVAL(m = 1) € NL.

3.3 Characterization of optimal sets of intervals

In this section we show a necessary and sufficient condition for the non-existence of
a priority algorithm which is optimal on every subset of a given set of intervals for
one-machine environments. This lemma can be used to verify within polynomial time
whether there exists such an optimal algorithm. We study separately the restricted case,
where the profits of the intervals are distinct, and the general case where the profits are
arbitrary. We assume that all the sets of intervals are “normalized” so as they do not
contain intervals of profit zero. Notice, that by the definition of an interval, the release
and deadline times cannot coincide. Sometimes, we abuse the notation and we treat
the sequences as sets, meaning that instead of a sequence we are considering the set of

elements it contains.

3.3.1 The distinct profits case

If for a given set of intervals all profits are unique then, we show the following necessary

and sufficient condition for the non-existence of an optimal priority algorithm.

Lemma 3.3.1. Let S be a finite set of intervals, with distinct profits. There does not
exist a priority algorithm which is optimal on every subset of S iff (*) there exists an
interval J € S and a set T C S, such that every interval in T overlaps J and has less
profit than J, no two intervals in T overlap each other, and the total profit of intervals

in T is greater than the profit of J.

Proof. Assume (*) holds. Consider A € PRIORITY. If J has higher priority than every
J' € T then we restrict our attention to the set S’ = {J} UT. If A reads J and rejects
then on input {J} A is non-optimal. If A schedules J then on input S’ the algorithm is
again non-optimal. If J does not have higher priority than every other interval in 7, then
assume that J” € T is one with higher priority than .J. Consider the set 5" = {.J, J"}.
If A reads J" and rejects it, then it performs non-optimally on {J”}. If it reads J” and
it accepts it then it performs non-optimally on S”.

For the other direction we show the contrapositive argument: Assume (*) does not
hold. We define LPRF € M-G-F-PRIORITY (LPRF stands for “Largest Profit
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First”) as the algorithm which orders the intervals in decreasing profit order. Since all
profits are distinct, the ordering of the algorithm is well-defined. We wish to show that
LPRF is optimal on every subset of S. We use lemma 3.2.1. Since (*) does not hold this
follows immediately by observing that for every interval J' € T, J has higher priority iff
it has greater profit. O

From the proof of the lemma 3.3.1 we take the following corollary.

Corollary 3.3.2. If there exists a priority algorithm A € PRIORITY (for the one-
machine environment) which is optimal on every subset of a set S of intervals with distinct
profits, then the greedy-fixed priority algorithm with the “largest profit first ordering” is

also optimal on every S C S.

Remark 3.3.1. Recall that MEMORYLESS-GREEDY-FIXED-PRIORITY < PRIORITY.
Notice that if the predicate (*) holds, we showed that no optimal algorithm from the
class PRIORITY (for the one-machine environment) exists. On the other hand if
this combinatorial property does not hold, then we showed that an algorithm from
MEMORYLESS-GREEDY-FIXED-PRIORITY (for the one-machine environment) is op-
timal. Thus, although we have shown, in chapter 2, that greediness, fixed ordering and
the memoryless property are weaker (w.r.t. simulation), this is not true for the case of

optimal priority algorithms.

3.3.2 The general case

When the intervals of the input set have possibly non-distinct profits, then we need to ex-
tend the previous condition so as to make it necessary and sufficient for the non-existence
of an optimal priority algorithm. Even though the condition can be strengthened in a
simple way, the proof that the new condition is necessary and sufficient is more technical

than in the distinct profits case.

Definitions - Preliminaries for sets of intervals

Definition 3.3.1. Say that we are given a finite set of intervals S = S"U{J,, J,}, where
S"={Ji,...,Jn} is a set of intervals each of which is of profit p € Z=2° and J,, J, have
profit less than p. We call a sequence T = (Ju, Ji,, Jiy, - -y Jiy, Jo), Ji; € S, 1 <k <n,

a bad chain if every element of T" overlaps only with the previous (if any) and the next
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(if any) interval in the sequence. A sequence like T', without J, and .Jy, is called simple

chain.

Proposition 3.3.3. Let S = {.J1,...,J,} be a set of intervals. If there exists a bad chain
in S then there does not exist a priority algorithm A € PRIORITY which is optimal on

every subset of S.

Proof. Let T = (Jo, Jiy, Jins - -5 i, Jb), 2 < k be the bad chain. Let A € PRIORITY
having an initial ordering starting with .J,. First consider the case where A reads J, and
rejects it. Then, on the input set {J,} it does not perform optimally. If A accepts J,,
then on input {J,, J;; } it does not perform optimally. Similarly, for .J,. If the ordering
starts with .J;, and rejects, A performs non-optimally on {J;, }. If A accepts .J;, then on
input {J,, J;,, J;, } performs non-optimally. Similarly we reason for the case where the

ordering starts with J;;, 1 < j < k. O

Definition 3.3.2. Given a set S of intervals and an interval J € S we define ¢(.J, S) to
be the profit of an optimal schedule among all intervals overlapping J which have smaller
profit than J. We call ¢(.J, S) the overlapping characteristic (or simply “characteristic”)
of J (wr.t. S). If T is a simple chain where all intervals have not only the same
profit but the same overlapping characteristic as well, we call T" a simple chain of equal

characteristic.

Obviously, an interval which does not overlap any other interval of smaller profit, has

overlapping characteristic 0.

Definition 3.3.3. Let S be a set of intervals. We define the equivalence relation Qs C
S x S “reachable through overlapping intervals of the same profit and characteristic” as
follows: (J,J') € Qg if there exists a sequence T = (J = J;,,...,J;, = J') such that
T C S, all intervals in 7" have the same profit and characteristic and for every 1 < j < k

Ji; overlaps at least J;,_,.

If no confusion arises we omit the subscript S and we simply write ().

Proposition 3.3.4. The relation Qg, “reachable through overlapping intervals with the

same profit and the same characteristic”, is an equivalence relation.

Definition 3.3.4. Let S be a set of intervals, where every J € S is of the form J =
(r7,ds,ps), r7 < dj, 75,d;,p; € Z2° where r;, d; and p; are the release time, the

deadline time and the profit of interval J respectively.
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e min,(S) is the minimum release time among the intervals in S.
e maxy(S) is the maximum deadline among the intervals in S.

e We write that an interval J completely overlaps an interval J' if r(J) < r(J') and
d(J) > d(J').

e We write that an interval J is on the right of an interval J' if r(J) > r(J') and
d(J) > d(J").

e We write that an interval J is on the left of an interval J' if r(J) < r(J') and
d(J) < d(.J").

Observe that if an interval .J completely overlaps another interval .J', then .J' must

have less or equal overlapping characteristic than .J.

Proposition 3.3.5. If S is a set of intervals of the same profit and [J]gs, J € S, is
an equivalence class of Qg then for every two J', J" € [J]gs, such that neither of J', J"

completely overlaps the other, there exists a simple chain of the form (J',..., J").

Proof. Follows from the definition of ()5, where the construction of the chain is done by
choosing intervals having the greatest finishing time among those that fulfill the properties

of forming a simple chain. O

We introduce the following notation. Given an interval J € S, by the set S; we
denote the set of all intervals in S that overlap J and have profit less than the profit of
J.

An optimal priority algorithm for optimal sets of intervals with arbitrary

profits

In section 3.3.1 we studied the specific structure that an optimal set of intervals must
have, when the profits of the intervals are distinct. Notice that lemma 3.3.1 holds for
the case where we allow intervals of the same profit, as long as they do not overlap each
other. Now, we allow overlapping intervals of equal profit. In this case we want to have
a closer look, to focus, on the “window of time” where intervals of equal profit overlap
each other. Proposition 3.3.6 states, that in such a “window” we expect to find more

“structure” than in the case of lemma 3.3.1. From the following proposition we are only
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going to use in the subsequent lemmata part (3). The rest are provided so as to make

this proof clearer.

Proposition 3.3.6. Let S be a set of intervals. Assume that S does not contain a bad

chain.

1. Let T = (Jy,...,Jx), Ji € S,k > 2 be a simple chain of equal characteristic. Then,
there does not exist an interval J € S with the same profit as the intervals in T
and with bigger overlapping characteristic than the intervals in T, and such that

dy <djy, andry; >ry (that is, T completely overlaps J).

2. Say that [J]g, J € S, overlaps an interval J' € S, where J' has greater overlapping
characteristic than J and the same profit as J. Let ' = min,([J]g) and d' =
mazxq([J]q). If J' does not completely overlap (r',d’) then J' is either on the left or
on the right of (', d') and there exists an interval J € S that overlaps J' and does
not overlap any interval from [J]q and J has lower profit than J.

3. Say that [J]g overlaps two intervals J', J" € S, where J', J" each has greater over-
lapping characteristic than J and the same profit as J. Let r' = min,([J]g) and
d' = mazy([J]g). If neither of J',J" completely overlaps (r',d') then either they
both are on the left or they both are on the right of (r',d').

Proof.

(1) Let T = (J1,...,Jx), k > 2 be a simple chain of equal characteristic. Suppose, that
there exists an interval J € S having the same profit as each interval in 7" and d; < d,
and r; > ry,, and such that it has greater overlapping characteristic than each of the in-
tervals in T'. Recall that S; denotes the set of intervals each of which overlaps .J and such
that each interval in S; has smaller profit than J. Say that OPTy, is an optimal feasible
schedule of S;. LetJ;, € OPTg, be the interval in OPTyg, with the smallest finishing time
(the “leftmost” one) and Jr € OPTys, be the interval with the largest starting time (the
“rightmost” one) in OPTys,. Let J' € T be the interval with the largest starting time that
overlaps* .J;, and J” € T be the interval with the smallest finishing time that overlaps
Jr. It cannot be the case that J' overlaps with both .J;, and Jg. If this holds then .J' is
of greater characteristic than we assumed. Therefore J' # .J”. Thus, the sub-chain of T
T = (J,...,J") together with Jr, and Jg form the bad chain (J,J',..., J", Jg).

4If there are more than one such intervals then choose the later one in the sequence according to T'.
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(2) If the interval (r',d') € [J]g then the result is obvious. Otherwise, there exists a
simple chain of equal characteristic T that extends from r’ to d’. From this point we use
(r',d") to refer to the intervals of 7. From (1) we know that (', d’) cannot completely
overlap J' (that is, r;» > 7" and d;» < d'). That is, J' is either on the left or on the right
of (r',d’). Sy must contain an interval not overlapping (1, d'); if not then (1, d’) overlaps
every interval in Sy, and we can reason as in (1) that S contains a bad chain. Hence,
J' overlaps (1, d') either from the left or from the right and there exists an interval J of

smaller profit than J' which overlaps .J' and does not overlap (1, d').

(3) This is a corollary of (2). Assume that J' is on the left of J”. If J',J" overlap
each other then the result is obvious. Suppose that J' and J” do not overlap each other.
If (', d') € [J]o then from (2) there exist a J; € S of smaller profit than .J' that overlaps
J' and does not overlap (r',d’). There is also a Jy € S of smaller profit than J” that
overlaps J” and does not overlap (', d'). Therefore, (jl, J (' d), J", j2> is a bad chain.
If (r',d’") & [J]o then there is a simple chain of equal characteristic 7' that extends from
' to d'. Let (J;,...J;),l > 1 be the sub-chain of 7" where J;, is the rightmost interval
in T that overlaps J' and J;, is the leftmost interval in 7" that overlaps J”. There also
exist .J; and .J, as previously. Hence, (jl, I iy diy, I, j2> is a bad chain. O

The following algorithm (ELPRF) is a modification of the LPRF. LPRF works
optimally (given the preconditions of section 3.3.1). Given the preconditions of lemma
3.3.7 we shall prove that ELPRF is also optimal. Notice that the steps the algorithm
performs are “driven/triggered” from the previous mentioned lemmata. Especially, the
most complicated steps of the algorithm stem from the structure of the set as described in
proposition 3.3.6. Proposition 3.3.6(3) restricts the cases where an interval with greater
overlapping characteristic, but the same profit, can overlap an equivalence class [J]g,

given that there is no bad chain in the input set.
Algorithm. ELPRF (Extended - Largest Profit First)
Input: A set S = {.Jy,.Jo,...,J,} of intervals.

Order the intervals in non-increasing profit order. For intervals with the same profit
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order them in non-decreasing characteristic. Say that .J, J" are two intervals having the

same profit and the same characteristic:

1. We order J, J" according to the Q-equivalence class. That is, if [J]g # [J']o and
every interval in [J]q is to the left of every interval in [.J']g, assign to every interval

in [J]g higher priority than every interval in [J']q.

2. Let I = (min,([J]g), maz4([J]g)). If there exists an interval .J of the same profit as
J, but higher characteristic, such that J is on the right of I then order [J]g in non-
decreasing finishing time order. Otherwise, order [J]g in order of non-increasing

starting time.

Remark 3.3.2. It seems interesting to discuss, at a more intuitive level, why we gave
such a complicated algorithm. Recall that in section 3.3.1 we showed that the LPRF
(Largest Profit First) is optimal (given the preconditions of section 3.3.1) on sets of inter-
vals where each interval is of distinct profit. Therefore, it seems plausible to try to devise
an algorithm that first orders the intervals in non-increasing profit order and then deals
with intervals of the same profit. The instance in figure 3.2 satisfies the preconditions
of lemma 3.3.7 below, and therefore there exists an ordering which is optimal. Let R be
the equivalence relation which is defined the same as ) only we ignore the equal over-
lapping characteristic constraint. That is, the equivalence classes of R contain intervals
of the same profit that are “reachable through overlapping”. Motivated by algorithms
for similar scheduling problems, one might hope that there will be an optimal ordering
with the property that each equivalence class of R is ordered either in non-decreasing
finishing time or in non-increasing starting time. In figure 3.2 we give an instance where
every algorithm that first schedules either .J; (the interval with the smallest finishing
time) or .J; (the interval with the largest starting time) is not optimal (on every subset
of the input). It is also obvious that a similar instance can be created for every number
of intervals in the input. Furthermore, we observe that this input instance rules out
not only the class of algorithms that order the R-equivalence classes in a “left-to-right”
fashion or in a “right-to-left” fashion but also rules out every algorithm that alternates

between “left-to-right” and “right-to-left” ordering within an equivalence class.
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J1 - p(29) J3 - p(q)
J2 - p(q) J4 - p(2q)
J5 - p(4q)

p>4q

Figure 3.2: Example, where the “class of simple” algorithms fails. p and ¢, p > 4q, are
interval profits. Jp, ..., Js are intervals each of profit p. We have written into parenthesis
the overlapping characteristic of each interval of profit p. Notice that in every optimal
ordering it is necessary that J, > J; and J; > J;. For example an optimal ordering is:

Jo > J3 > Jy > Jy > J5 > (the profit ¢ intervals).

Characterization of optimal sets of intervals of arbitrary profits

Lemma 3.3.7. Given a finite set of intervals S = {.J1,...,JJ,}, if

(a) the negation of (*) (from lemma 8.3.1) holds. That is, for every interval J € S and
every set S' C S, where every interval in S" overlaps J and has less profit than J and no
two intervals in S’ overlap each other, we have that the total profit of intervals in S’ is
less than or equal to the profit of J,

and

(b) there is no bad chain in S,

then ELPRF is optimal on every subset of S.

Proof. We will use lemma 3.2.1. Suppose that ELPRF € M-G-F-PRIORITY is not
optimal. Let J € S and 7' C S and assume (i),(ii),(iii), (iv) of lemma 3.2.1. That is,

assume:
i. every interval in T" overlaps .J
ii. every two intervals in T" do not overlap each other
iii. profit(T) > profit({J})
iv. for all J' € T, J has higher priority than .J'.

If every interval in 7" has (strictly) smaller profit than .J then this contradicts (a). Thus,

T contains at least one interval of profit equal to the profit of .J. It is sufficient to look
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at the cases where T = {J',J"}, J' is to the left of J" and profit(J') = profit(J),
profit(J") < profit(J).

e Case: profit(J') = profit(J) = profit(J"). Because of the way the algorithm
works ¢(J, S) < ¢(J',S) and ¢(J, S) < ¢(J",5).

— Suppose that J,J', J" have equal overlapping characteristic. Since they be-
long to the same equivalence class ELPRF orders them either by increasing
finishing time or by decreasing starting time. J' and J” do not overlap each
other and they both overlap J. Trivially, if .J completely overlaps either one
of J',.J" then it has lower priority than the one it completely overlaps. If J’s
finishing time is less than or equal to that of J’ then it cannot overlap J".
Similarly, .J’s starting time cannot be bigger than the starting time of J” (it
cannot overlap J'). In both cases J cannot possibly have greater priority than
J' or J".

— Suppose that J,.J', J"” do not have equal overlapping characteristic. If J has
smaller overlapping characteristic than each of J', J” then it cannot completely
overlap either one of them. In this case, since J’, J” do not overlap each other
there exists a J; that overlaps J', does not overlap J and is of smaller profit
than .J'. Similarly, there exists a Jo that overlaps .J”, does not overlap J
and is of smaller profit than J”. Therefore, (jl, J'J,J", j2> is a bad chain.
That is, J must have equal characteristic to at least one of J',.J”. Say that
c(J,S) = ¢c(J',S), so ¢(J,S) = c(J',S) < e(J",S). Note that J' € [J]g and
J" is completely to the right of J'. This implies that J” does not completely
overall [J]g and it is not to the left of [J]g. Since there is no bad chain in
S, proposition 3.3.6(3) therefore tell us that J” is to the right of [J]g. By
examining how the algorithm operates, we see that [J]g (recall that J,.J' €
[J]g) is ordered in increasing finishing time. Hence, .J’ has higher priority than
J, which is a contradiction. Therefore, we must have ¢(.J,S) = ¢(J",5) <
c(J',S). As above this means that J' is to the left of [J]g. By proposition
3.3.6(3) there cannot be a J" to the right of [J]g, where J" is of the same
profit as J and has greater overlapping characteristic than .J. Therefore, the
algorithm will order [J]g in decreasing starting time. Hence, J” has higher

priority that .J, which is a contradiction.
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e Case: profit(J') = profit(J), profit(J") < profit(J). Because of the way the
algorithm works ¢(.J,S) < ¢(.J', ). Therefore, there exists an interval J € S that
overlaps .J', does not overlap JJ and has smaller profit than .J. Hence, (j, J' T I

is a bad chain.

O

We are ready to give the main lemma of this section, which is a corollary of the

previously mentioned lemmata.

Lemma 3.3.8. Let a finite set of intervals S = {.J1,...,J,}. There does not ezist an
A € PRIORITY, where A is optimal on every subset of S iff

(a) (*) (from lemma 3.3.1) holds

or

(b) there exists a bad chain in S.

Proof. We show that if (a) or (b) holds, then there is no optimal priority algorithm. The
proof for (a) follows from the same argument in the proof of the lemma 3.3.1. (b) is the
proposition 3.3.3. We show the other direction by its contrapositive argument, which is

the statement of lemma 3.3.7. O

As a corollary of the above lemma we prove the following theorem. In section 3.4
we prove the stronger theorem EXISTS-OPT-INTERVAL(m = 1) € U, — NC?. For this

stronger result and for theorem 3.3.10 we use the following lemma.

Problem 7. EXISTS-BAD-CHAIN
Instance: Let S be a finite set of intervals.

Question: Does there exist a bad-chain in S?
Lemma 3.3.9. ExisTs-BAD-CHAIN € L

Proof. The deterministic logspace bounded algorithm that decides whether a bad chain
exists is straightforward (as in lemma 3.3.5). Let J,, J, and J,, Jy, be 4 intervals from the
input, where profit(ja),profit(jb) < profit(J,) = profit(J,). Obviously we can keep 4
indexes in logspace for each of them and counters so as to examine every 4 such intervals.
Furthermore we can check in logspace whether 2 intervals overlap each other. For every
4 such intervals we examine whether a bad chain can be formed by checking whether we

can find an interval of profit equal to the profit of .J, (and .J,) that “goes farthest”. If by
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adding this interval a bad chain is not formed (and these intervals can still form a bad
chain) we keep the interval we previously added and we repeat by checking whether we

can add a new interval (of the same profit as .J,) that “goes farthest”. O
Theorem 3.3.10. ExISTS-OPT-INTERVAL(m = 1) is in P.

Proof. For every interval J in the input set, we compute the set of its overlapping and
less profitable intervals S;. Then, we find the maximum total profit and we use lemma
3.3.8 to prove non-optimality. This works within polynomial time. If we haven’t proved
non-optimality then we use the algorithm from the proof of lemma 3.3.9 to test whether

there exists a bad chain. O

In section 3.4 we show that the following Interval Scheduling problem is in logspace

uniform NC?.

Problem 8. INTERVAL-SCHEDULING(m = 1)
Instance: Let S = {.Ji,...,J,}, n € Z" be a set of intervals and B € Z" a bound.
Question: Does there exist a feasible schedule S" C S, where profit(S') > B?

Remark 3.3.3. In section 3.4 we show that OPT-EXISTS-INTERVAL(m = 1) is in NC?. Tt
is worth noting that ELPRF is also in FSIZE — DEPTH (n°WY, (logn)?). This is due
to the fact that INTERVAL-SCHEDULING (m = 1) € Uy, — NC? and that we can decide in
deterministic logarithmic space whether a bad chain exists, even for the arbitrary profits
case (lemma 3.3.9). If each profit has value which is polynomial in the number of intervals

then we can implement ELPRF in the function analog of NL.

3.4 Languages in uniform NC?

In this section we show the following theorem.

Theorem 3.4.1. OPT-EXISTS-INTERVAL(m = 1), INTERVAL-SCHEDULING(m = 1) and
OPT-GF-INTERVAL(m = 1) are in U, — NC?.

This theorem follows as a corollary of the following lemmata and lemma 3.3.9.

Remark 3.4.1. We can reduce the problem of computing the optimal schedule of a set
of intervals to the problem of computing the longest (vertex) path in a directed acyclic

graph where weights have been assigned to the vertices. This can be easily solved by
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the use of Dynamic Programming. It is worth noting that in the context of scheduling
theory these types of graphs have been studied extensively. These graphs are called vertex
weighted disjunctive graphs and the longest (vertex) path in such a graph, corresponding

to an optimal schedule, is called critical path.

In this work we use the term “path in a graph” to denote a “simple path in a graph”.
We use the term “walk in a graph” to denote a “not-necessarily simple path in a graph”.

‘

Sometimes we use the term “path” to refer to a “walk” but this is done only for consis-
tency with the literature and where no confusion arises. For example, in the literature

the term “path” is used to denote a walk in a digraph w.r.t. the st-connectivity problem.

Problem 9. DAG-LONGEST-PATH

Instance: Let G = (V, E) be a directed weighted acyclic graph and w : E — Z. Let
B e Z.

Question: Does there exist a directed path of (weighted) length greater or equal to B?

It is obvious that a directed (weighted) longest walk on a DAG is not infinite and
coincides with a directed longest path in the same graph. The fact that DAG-LONGEST-
PATH is in NC' (not necessarily in NC?) can be taken as a simple corollary of [16, 13]
through the theorems that interface the PRAM model and the bounded fan-in circuits.
Since these works are mainly interested in tradeoffs between the number of processors
and parallel time, they are not quite suitable for our purposes. We need a much simpler
result that only deals with the depth of a bounded fan-in circuit. The following lemma
can be shown using “standard” ideas used in the literature of parallel algorithms (for

example see [15]).
Lemma 3.4.2. DAG-LONGEST-PATH € U, — NC?

Proof. Let G = (V, E),w : E — Z be a weighted directed acyclic graph. Let n = |V| and

each vertex be one element among {1,...,n}. We denote as DS .

of (G, w), where the d; ; = w ((4,7)). If (4,5) € E then d; ; = —oco. We write D, instead
of DY

nxn

the distance matrix

if no confusion arises. We first show the following proposition.

Proposition 3.4.3. Say that D is a distance matriz of a weighted directed graph (G, w),
where G = (V,E),w : E — Z. The a;; element of D corresponds to the longest walk
of k edges on (G, w), given that the operations used for the matriz multiplication are the

binary operations max, +, where Z U {—oc} are monoids under mazx and +, instead of
the field (Z,-,+).
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Proof. Straightforward induction on k. O

We compute D™ by using repeated squaring. Thus, we need [log(n)] matrix mul-
tiplications. Since, ADD, MAX € FSIZE — DEPTH (n°WY log(n)) we can compute
matrix multiplication over (max,+) in F.SIZE — DEPTH (no(l),log(n)). Hence, we
can compute D" in FSIZE — DEPTH (n°W, (log(n))Z). That is, we can compute a
longest walk of length n in FSIZE — DEPTH (n°", (log(n))?), since in a weighted
DAG the maximum element of D™ corresponds to the longest path in the given weighted
directed acyclic graph. If we compare each element with the given B for each matrix
entry we can compute 1 iff B is less or equal than the corresponding element. Hence, we
can put an unbounded fan-in OR gate and accept if there exists such an element. This
OR gate can be trivially simulated with a complete binary tree, of bounded to 2 fan-in

OR gates, of depth order of a logarithm in its fan-in. O

In section 3.7 we show that POLY-INTERVAL-SCHEDULING(m = 1) is complete for
NL. We conjecture that INTERVAL-SCHEDULING(m = 1) is not in NL. Under this

conjecture the following theorem seem to be some interest.
Lemma 3.4.4. INTERVAL-SCHEDULING (m = 1) is logspace reducible to DAG-LONGEST-PATH.

Proof. Given an instance x of INTERVAL-SCHEDULING(m = 1) we reduce it, within
logarithmic space, to an instance of DAG-LONGEST-PATH. Let S be a finite set of
intervals and B be an integer. The instance for the DAG-LONGEST-PATH is the same
integer B and the weighted graph constructed as follows. Order the intervals of S in
increasing finishing time. Say that the sequence is T' = (Ji,...,J,). We construct a
set of vertices V' = {uy,...,up, ups1}. Each of the first n vertices corresponds to an
interval in 7. Say that the vertex u; corresponds to the interval .J;. From a vertex
u; we put an edge to a vertex wu;, if j > ¢ and J; does not overlap J;. The weight of
(ui,u;) is equal to the profit of J;. Finally, we add an edge from each u; € V\{upy1}
to u,y1 and we assign weight equal to the profit of J;. Observe that the corresponding
graph is a weighted directed acyclic graph. Notice that (uq,...,u,11) is a topological
ordering of its vertices and thus there is no path from a vertex u that corresponds to
an interval J to a vertex v that corresponds to an interval J' if J overlaps J'. It is
obvious that the above construction, which computes a function f : ¥* — ¥*  works
within logarithmic space. We must show that © € INTERVAL-SCHEDULING(m = 1) iff
f(z) € DAG-LONGEST-PATH.
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Suppose that € INTERVAL-SCHEDULING(m = 1). Then there exists a set of non-
overlapping intervals (that is, a feasible schedule) S" = {J;,,...,J;,} € S where the
intervals have total profit greater or equal to B. Each J;;, 1 < j < k corresponds to a
vertex u;; in the constructed graph. W.Lo.g. J; ,...,J; are the intervals in increasing
finishing time order. By construction there exists an edge from w;, to u;;, ,, 7 < k and
there also exists an edge from w;, to u,4;. Also, by construction the total profit of the
path equals to profit(S’').

Suppose that f(r) € DAG-LONGEST-PATH. Then there exists a path (u;,,...,u;,)
of total weight B’ > B. Again, by construction, the set {.J;,...,J;,_,} is a feasible
schedule of total weight B’ > B. O

We take as a corollary INTERVAL-SCHEDULING(m = 1) € U, — NC?. The following

lemmata have very similar proofs as the previous one.
Lemma 3.4.5. EXIsTS-OPT-INTERVAL(m = 1) is logspace reducible to DAG-LONGEST-PATH.

Proof. Check whether there exists a bad chain and for every interval in the given set
repeat the construction in the proof of lemma 3.4.4 (for the set of intervals of profit

smaller than p that overlap an interval of profit p). O
Lemma 3.4.6. OPT-GF-INTERVAL(m = 1) is logspace reducible to DAG-LONGEST-PATH.

Corollary 3.4.7. ExisTS-OPT-INTERVAL(m = 1), OPT-GF-INTERVAL(mMm = 1) € UL, —
NC?

3.5 Languages in L

In the “open problems” section 3.9 we conjecture about the complexity of
PoLy-NON-OPT-GF-INTERVAL(m = 1) and POLY-EXISTS-OPT-INTERVAL(m = 1). When
we further restrict these languages to the case of distinct profit intervals then the following

lemma holds.

Lemma 3.5.1. POLY-OPT-GF-INTERVAL(m = 1, DISTINCT PROFIT) and POLY-EXISTS-
OPT-GF-INTERVAL(m = 1, DISTINCT PROFIT) are in L.

Proof Sketch. Straightforward application of lemma 3.2.1. Let S be the set of intervals.

Consider the intervals in increasing profit order. Iterate through intervals in increasing
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profit order and successively build a set Sopr. For every interval simulate LPRF on
the set of overlapping intervals. If the profit (of the optimal schedule computed by
LPRF) is greater than the interval under consideration then reject. Else continue with
the next interval in the order. If every interval has been considered without rejecting

then accept. O

3.6 Priority Algorithms for intervals of equal profits

In this section we deal with greedy-fixed priority algorithms for one processor ma-
chine environments. Recall (from chapter 2) that for the one machine environments
G-F-PRIORITY ~ M-G-F-PRIORITY. Such algorithms are well-defined if we only
describe the ordering of the intervals. Lemma 3.6.1 characterizes an optimal priority
algorithm for the case where all intervals are of the same profit and follows as a corollary

of lemma 3.2.1.

Lemma 3.6.1. Let S be a set of intervals of the same profit and T = (Jy,...,J,) be a
sequence of these intervals. The greedy-fized priority algorithm that defined through T s
not optimal (on every subset of S) iff there exist three intervals J,J', J" € T, where J

overlaps J', J" and J', J" do not overlap each other and J has higher priority than both
J, J".

It is interesting to notice that the well-known optimal priority algorithms, for the
interval scheduling problem where the profits are equal, SFTF (Shortest Finishing Time
First) and LSTF (Largest Starting Time First) trivially satisfy the optimality condition
derived from lemma 3.6.1. Although, we do not intend to characterize every such optimal
algorithm we just state a few, easy to show, lemmata that mix the SFTF and LSTF
strategies.

In what follows we assume that an instance for NON-OPT-GF-INTERVAL-EQUAL-PROFIT
consists of n pairs of intervals, where every pair is of the form (r,d) and every interval is

an n-bit long number in binary.
Lemma 3.6.2. NON-OPT-GF-INTERVAL-EQUAL-PROFIT € Up — AC?

Proof. Tt is straightforward to show containment in AC?. For the case of determin-

istic logtime uniform AC® we use an alternative characterization. It suffices to show
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that NON-OPT-GF-INTERVAL-EQUAL-PROFIT € FO[<,bit] = Up — AC°. What fol-
lows is a straightforward technicality. From section 1.6.2 we have that for FO|[<, bit]
we can have the predicates PLUS and TIMES. We use all kinds of shorthand nota-
tion for predicates (e.g. say that P is a predicate of arity 1, then P(a + b) stands for
de PLUS(a,b,c) A P(c)). Since, we have n intervals (pairs) of n-bit long numbers we can
obtain n (Im (LENGTH (m) A (3n 2n? = m))) and thus the release time of the k — th
interval starts from the bit (kK — 1)n + 1 and the deadline from kn + 1. Recall that the
predicate B(i) is true iff the i-th bit of the input is 1. The following first-order formula
checks whether the release time of the k-th interval is greater than the deadline time of
the h-th interval:

i (i <n)AB((k—1)n+1i) AN—=B(hn +1)

/\(Vl((z’ <1<n)AB(hn+1)— B((k—1n+0)) v (1> n))

This formula checks whether there exists a bit ¢ of the release time of the k-th in-
terval that it is 1 and the corresponding bit of the deadline of the h-th interval is 0
(B((k—1)n+i)A=B(hn+i)). Furthermore, every higher than ¢ bit of the deadline must be
less than or equal to the corresponding bit of the release time (B(hn+1) — B((k—1)n+1)).
We can trivially write a first-order formula which is satisfied by the standard model for
FOI[<,bit]. The formula checks whether there exist three interval ki, ks, k3 where the
deadline time of the second is greater than the release time of the first and the release
time of the third is less than the deadline of the first and the deadline of the second is

less or equal to the release time of the third (lemma 3.6.1). O

Lemma 3.6.3. Let S be a set of intervals and

T={ Ji, o, oo, T , Jiy Jivty ooy dn ) be a sequence of these in-

“increasing ﬁTliShiﬂg time” “decreasing starting time”
tervals, where every J € {J;, Ji11,...,Jn} has finishing time greater than or equal to the
finishing time of J;_1. The greedy-fixed priority algorithm with ordering T is optimal on
every subset of S = {Ji1,Jo, ..., JJn}.

This lemma cannot be extended in an obvious way to a recursive type of lemma
without imposing a further restriction in the finishing time of such a partition. Under

this restriction we get the following lemma.

Lemma 3.6.4. Let S be a set of intervals and T = (Jy, ..., Jx_1, Jey. ooy Tty Jisny o ooy Jn)

be a sequence of these intervals in increasing finishing time order.
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L@tT’Z< Ji17Ji27"'7Ji ) Jj Jj27"'7Jjb ) Jh17Jh27"'7Jhc >:
D Y / ~ >

Ju
N

” “arbitrary optimal ordering”

“increasing finishing time” “decreasing starting time
where J;, € {J1, ..., Jx_1}, Jju € {Ji41s -, Jn} and Ty, € {Jx, ..., Ji} and no interval in
{Jg,- .., i} has greater starting time than an interval in {Jyy1, ..., JJn}. The greedy-fized

priority algorithm with ordering T' is optimal on every subset of S = {Jy,Jo, ..., JJn}.

3.7 POLY-INTERVAL-SCHEDULING(m = 1) is complete
for NL

Problem 10. POLY-INTERVAL-SCHEDULING(m = 1)

Instance: Let S ={Ji,..., .}, n € Z* be a set of intervals with profits having values
a polynomial in n, and B € Z* a bound.

Question: Does there exist a feasible schedule S" C S, where profit(S') > B?

We show that POLY-INTERVAL-SCHEDULING (m = 1) is complete for NL w.r.t. logspace
many-to-one reductions. For this result we need the N L-completeness of STCON (k)

which has a well-known folklore proof.

Problem 11. STCON(K)
Instance: Let G = (V, F) be a digraph, s,t € V and k € Z" and k < n.

Question: Is there a directed (not necessarily simple) path from s to t of k edges?
Lemma 3.7.1. STCON (k) is NL — complete.

Proof. Trivial. Sketch: It is easy to modify the algorithm for the STCON such that we
keep a counter for the number of visited vertices. We can update this counter within
logspace. For the hardness direction we reduce STCON to STCON (k). Given the
digraph G = (V, E') we construct a new graph by adding a self-loop edge to s. O]

Theorem 3.7.2. POLY-INTERVAL-SCHEDULING (m = 1) is complete for NL w.r.t. logspace

many-to-one reductions.

Proof. In section 3.2 we show containment of POLY-INTERVAL-SCHEDULING(m = 1) in
NL. We reduce STCON (k) to POLY-INTERVAL-SCHEDULING (m = 1). Let the instance
G=V,E), V = {ug,...,upn 1}, s = up, t = u,_1 and k € Z*. We will associate

with each of the vertices k£ + 1 points of the time line consisting of the non-negative
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integers. First associate the s = ug,uy ..., u, 1 =t with points (of time) 0,1,...,n —1
respectively. Also associate these vertices with points n,n + 1,...,2n — 1; etc ending
with points kn, ..., (k4 1)n — 1. Thus, in total we can see that there exist k£ 4+ 1 blocks
of time points. For each edge in the graph we create k intervals with proportional
profit. For each edge (u;,u;) and for each 0 < [ < k we create an interval from the
point corresponding to u; in block [ to the point corresponding to wu; in block [ + 1;
that is, we create the interval (In + ¢, (I + 1)n + j). The constructed instance for the
POLY-INTERVAL-SCHEDULING(m = 1) is the set S and the desired bound is equal to
nk — 1.

If there exists a path of length k& then we show that there exists a schedule of total
profit nk. Let that path be (s = ug, u;,, ..., ur_1 =t). Then there exists an interval from
the point of s to that of u;, of the first block. There also exists an interval from point u;,
of the 1st block to the point u;, of the second. Similarly, we show that we can schedule
intervals from s to t: (0n+0, In+iy), (In+iy, 2n+1s),..., ((k—1)n+ix_1, (k—1)n+n).
Obviously this schedule does not leave any “gap”, and since we consider intervals of
proportional profits the total profit equal to the distance between s and ¢ which is nk —1.

Conversely, let S be a schedule of profit nk — 1. Since each interval of S starts from
a point which corresponds to a vertex v and finishes at a point which corresponds to a
vertex u if the edge (u,v) € FE, then there exists a path from s to ¢ which corresponds
to the points listed in the shortest finishing time first ordering. This path is of length &
since between two successive blocks we can schedule only one interval and an interval is

extended exactly between two successive blocks. O

Remark 3.7.1. It is clear that the same reduction works for the language where we

consider an exactly equal total profit for the desired bound.

3.8 Optimal sets of jobs

What if we allow jobs and multiple-machine environments? We study normal forms for
priority algorithms for the Job Scheduling problem (on possibly multiple processors).
We are motivated by the study of the complexity of languages related to the question
of whether a given set of jobs admits an optimal priority algorithm. We attempt to
restrict the possible forms an optimal priority algorithm may have. As the following

example shows the situation is different than in case of interval sets; where ELPRF €
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M-G-F-PRIORITY.

Counter-example. The following set of distinct proportional profit jobs is somehow
discouraging regarding the existence of a restriction on the possible forms of optimal
priority algorithms. This set rules out a possible normal form that an optimal priority
algorithm may have: not only there does not exist an optimal priority algorithm consid-
ering the jobs in non-increasing profit order; but also there does not exist a fixed-priority

algorithm for this set.

J1 J2 J3

Figure 3.3: Jobs .Jy, Js, J3 are intervals. J and J' are jobs where their processing time is
denoted by the solid horizontal line and their release and deadline times are denoted by

the small vertical “line-bounds”. The job profits are written below each job.

The following definition associates the “behavior” (computation) of the algorithm

with the given set of jobs.

Definition 3.8.1. Let S be a finite set of jobs and A be a priority algorithm on S. Say
that J, J' € S. We say that J causally precedes J' when computing on S, J =4 J' if
A reads J (from the input) before it reads J' (when the input set is S). For a fixed set
S we write J >4 J' if for every S’ C S where J,J' € S’ we have J >, ¢ J'. If it is

understood from the context we may simply write J > J'.

Say that S = {Ji, J», J3, J, J'} is the set of jobs depicted on figure 3.3. Every job is
of distinct proportional profit. Obviously, for an optimal fixed-priority algorithm on a
set, S, there is a total ordering w.r.t. > on S.

We give a MEMORYLESS-GREEDY-PRIORITY algorithm optimal on S and we show
that there does not exist a fixed-priority algorithm optimal on S.

Consider the jobs in figure 3.3. The following priority algorithm from MEMORYLESS-
GREEDY-PRIORITY is optimal on S.

e The initial ordering is Jo > J; > J3 > J > J'.
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e If J, is scheduled then determine the ordering J > J' > J; > J; and schedule
greedily.

e Else, if J; is the first scheduled job then determine the ordering J > J' > J;
and schedule J at the latest available time and J' at the earliest available time.

Similarly, if J3 is the first scheduled job (the ordering is J > J').

Looking into the possible subsets of S, we see that this priority algorithm is optimal
on S. Suppose that there exists a fixed-priority algorithm A optimal on S. Therefore,
there exists a total ordering on S under the causal precedence relation. If J; > J then A
does not gain optimal profit either on: (i) {J;} or (ii) {Jo} or (iii) {J1, J} or (iv) {Jo, J}
or (v) {1,Jo,J}. Hence, J > J;. Similarly, J' > J;. Suppose that J; > J. Then
J = J3 = J > Ji. Oninput {J', J, J3}, J' is scheduled not overlapping .J;. Then, on
input {.J, J', J;} A does not gain optimal profit. Similarly when J; > .J'. Therefore, .J, .J’
causally precede J; and J3. On input {J,.J', J;, J5}, at least one job among {.J, J'} is
scheduled overlapping the corresponding U € {.J;, Jo}. Then, on input {.J, J', U} A does

not gain optimal profit.

Properties of optimal priority algorithms Theorems 3.8.2, 3.8.1 and 3.8.3 are
properties of optimal priority algorithms. These results hold for machine environments
of any number of machines, where the jobs are not necessarily of proportional profit.

Here is a normal form for optimal priority algorithms.

Theorem 3.8.1. Given a finite set of jobs S and an optimal priority algorithm A €
PRIORITY on S, there exists A' € M-G-PRIORITY which is also optimal on S.

Theorem 3.8.1 directly follows from lemmata 3.8.6 and 3.8.7.

It is easy to see that there exist infinitely many finite sets of distinct profit jobs,
where for each such set the number of (different) optimal priority algorithms is super-
exponential w.r.t. the cardinality of the set. In this sense the following theorem is of

some importance regarding sets of distinct profit jobs.

Theorem 3.8.2. Let S be a finite set of distinct profit jobs which admits an optimal
priority algorithm. Then, every two priority algorithms optimal on S schedule the same

set of jobs on every subset of S.

Theorem 3.8.2 is a corollary of lemmata 3.8.5 and 3.8.8.
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There are trivial examples where theorem 3.8.2 fails in the arbitrary profits case.
Theorem 3.8.3 is the strongest “invariant” we have obtained, analogous to theorem 3.8.2
for sets of arbitrary profits. This theorem shows that under optimal priority algorithms
the profit of the (so far) scheduled jobs is unaffected by the addition of new jobs of smaller
profit (in the input set).

Theorem 3.8.3. Let S be a finite set of jobs and A € PRIORITY be optimal on S.
For every S" C S consider the optimal schedule A(S"). Say that m is the minimum profit

among jobs in S’. Say that S C S where every job in S has profit smaller than m. If
A(S'US)=8"US", where 8" C S and S C S, then profit(A(S")) = profit(S").

Theorem 3.8.3 is a corollary of lemma 3.8.4 (the proof of theorem 3.8.3 is given at

the end of this section).

Lemma 3.8.4. Let S be a finite set of jobs and A € M-PRIORITY be optimal on S.
For every S" C S consider the optimal schedule A(S"). Say that m is the minimum profit

among jobs in S'. Say that S C S where every job in S has profit smaller than m. If
A(S'US)=8"US", where 8" C S'" and 8" C S, then profit(A(S")) = profit(S").

Proof. We show the lemma by induction on the cardinality of S’. For the induction
basis fix an S” = {J}. Suppose that the induction predicate does not hold. That is,
there exists an S s.t. profit(A(S")) # profit(S”). Therefore, S” = (. A is memoryless
and thus A(S"U S) = A(S" U S"). Consider the sequence in which A reads jobs from S’
(when computing on S"US"). Also, consider the smallest prefix P of this sequence where
A(PUS'") = P. Say that J is the last job in this prefix P. Every job from P is scheduled
and thus profit(A((P\{j}) U S")) > profit(PUS'); thus A is not optimal.

Suppose that for every S’, where |S’| < k the induction predicate holds. We wish
to show that for every S’ where |S’| = k the induction predicate is true. Assume the
contrary. That is, there exists an S’, |S’| = k where profit(A(S")) # profit(S"). Since
A is optimal we have that profit(A(S')) > profit(S") (S” defined as above - in the
statement of the lemma). Note that there does not exist J € S’ s.t. J ¢ A(S’) and
J ¢ S". 1If such J exists then by the induction hypothesis and the fact that A is
memoryless we reach a contradiction. Consider the sequence T} = (J},J;,..., J}) in
which A reads jobs from S’ (S defined as above). Let Pj = {7, I 1< <L
Say that ¢ is minimum s.t. A(S"U P;) = S” U P, where profit(A(S")) > profit(S").
Clearly, by the induction hypothesis, J! cannot be the last scheduled job read by A.
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Therefore there exists a job from S’ scheduled by A after J!. Consider the two runs of A
on (S"UP; ;) and (S"UP;). Up to the point that J! was read (when A runs on (S’UP;))
the same jobs were scheduled, for the two runs of A. Record the sequence of jobs read
by A after J!, when A runs on (S’'U P;) (notice that these jobs are all from S’). Let this
sequence be Ty = (J2 J2,...,J2 ..., J?). We have already argued that the two runs
agree only on acceptances. We look for the first job J2 where the two runs of A disagree
on the rejection/acceptance of this job. If such a job does not exist then we have a
contradiction (profit(A(S")) = profit(S")). Say that all jobs read by A, up to the point
that J! (excluding J}) has been read, is P. Say that J2, & A(S’) and J2, € S". Since A
is memoryless, J2 is read after every job in P; and by the induction hypothesis we have
that: profit(A((S"\{J2}) U B)) = profit(A(S"\{JZ})) + profit(P;) = profit(P;) +
profit(A(S’)) > profit(Pi) +profit(5’”) = profit(A(S’ U Pi)), a contradiction. Hence,
J2 € A(S') and J2 & S". When only P has been considered, we know that all of
{J2,...,J% |, J2} can be scheduled. Let profit(A(P)) = s, profit({J¢,...,J4_}) =5
and profit({J2}) = m > m' = profit({J}'}). Thus, profit(A(P U {J},...,J3} U
{J}) =s+s'+m' < s+s'+m=profit(A(PU{JZ,...,J2})) which is a contradiction.

U

Lemma 3.8.5. Let S be a finite set of distinct profit jobs which admits an optimal pri-
ority algorithm. Then, every two optimal memoryless priority algorithms on S schedule

the same set of jobs on every subset of S.

Proof. By induction on cardinality of S’ C S. The induction basis trivially holds. Assume
that for every S', |S’| < k the lemma (induction predicate) is true. We wish to show that
it holds for every |S'| = k. Suppose that there exists an S, |S’| = k and two memoryless
priority algorithms A, A" optimal on S, such that A(S") # A'(S’). Consider the sequence
in which A reads jobs from S": Ty = (J1, Jo, ..., Ji). The corresponding sequence for A’
is Ty = (Jiy, Jips - - -, Ji,). Each job in T} is associated with an acceptance or rejection
decision. A and A’ cannot agree on a rejection decision for a job. If this happens for a
job J € 8" then A(S") = A(S"\{J}) = A'(S"\{J}) = A'(S’). Therefore, the jobs rejected
by A are accepted by A" and vice-versa. Say that A(S") = S" U Sa, A'(S") = 5" U Sy,
such that Sy NS4 = 0.

Say that J is the last job in T accepted by A and rejected by A’. Remove J from
S'. Since A’ is memoryless A'(S"\{J}) = A'(S"). On (S'U{.J}) A accepts every job from

S since (S” U Sy ) is the unique optimal schedule for a memoryless priority algorithm.
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Furthermore, there are no scheduled jobs from S4. Therefore, when A computes on S’ J
is read before every job from S4. We argue that J is the only job in S4. Suppose that
|S4| > 1 (when A computes on S’). Since J is the last job accepted by A and rejected
by A’, then there exists a j € S, read before J (when A computes on S'). If we remove
J then A rejects every job from S, which is not true since j is read (and scheduled)
before considering jobs from S,. Hence, Sy = {J}.

Symmetrically we show that S = {.J'}. We know that profit(S"US,) = profit(S"U
Su) which implies that profit({J}) = profit({J'}) contradicting the distinct profits

assumption. O

Lemma 3.8.6. Given a finite set of jobs S and an optimal priority algorithm A €
PRIORITY on S, there exists A’ € G-PRIORITY which is also optimal on S. Fur-
thermore, for every S' C S A(S") = A'(S").

Proof. Straightforward. Fix an arbitrary set S’ C S. Suppose that A (preemptively)
rejects a job J € S’ which can be scheduled (during the execution of A on S’). Say that
S" C 5" is the set of jobs read up to the point that .J was read. Then on S”U{.J} A does
not gain optimal profit if profit(.J) > 0. Therefore A rejects jobs of positive profit only
if they cannot be scheduled. A’ is the same as A where in every ordering the jobs of zero

profit come last. Furthermore, A’ rejects a job only if this job cannot be scheduled. [

Lemma 3.8.7. Given a finite set of jobs S and an optimal priority algorithm A €
G-PRIORITY on S, there exists A' € M-PRIORITY which is also optimal on S.

Proof. We show a stronger statement. Given A we show that a family of memoryless
algorithms is optimal on S. Say that R = S\A(S). Fix a set R C R. We show
that every algorithm AF € M-G-PRIORITY constructed as follows is optimal on
S: Simulate A by reconstructing the execution history assuming the jobs from R’ that
cannot be scheduled (during the current execution of A% ) to be in the input set. We
prove by induction on the cardinality of S’ C S. The induction basis trivially holds.
Assume that the lemma (induction predicate) holds for every S’ |S'| < k. We wish to
show that it holds for every S’ where |S’| = k. Fix an arbitrary S”, |S”| = k. Consider
the execution of A on S”. If A schedules every job from S” then (by construction
and the optimality of A) Aﬁ also schedules every job from S”. Else, let J € S” be
a job rejected by A. Then, profit(A(S")) = profit(A(S"\{J})). By the induction
hypothesis profit(A(S"\{J})) = profit(A%(S"\{J})) = profit(A¥ (S")), since AL is

memoryless. ]
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Lemma 3.8.8. Let S be a set of distinct profit jobs that admits an optimal priority algo-
rithm. Then, for every optimal priority algorithm A there exists an optimal memoryless
algorithm Ayp where for every S' C S we have that A(S") = Ap(S5").

Proof. Straightforward. Since S is a set of distinct profit jobs every optimal memoryless
priority algorithm on S accepts the same set of jobs on every subset of S. From the
proof of lemma 3.8.7 we have a family of optimal memoryless priority algorithms. Fix
a memoryless priority algorithm Aj; optimal on S. For an arbitrary S’ C S consider
the set R of jobs rejected by A (when computing on S’). Say that A% is the optimal
memoryless algorithm associated with the set of rejected jobs R (as in the proof of lemma
3.8.7). We have that A, (S") = A% (S") = A(S"). O

Here is the proof of theorem 3.8.3.

Proof of Theorem 3.8.3. This is a corollary of lemmata 3.8.7 and 3.8.4. Fix S" and S such
that profit(A(S")) # profit(S") (S',5", S are defined as in the statement of the theo-
rem). Let R be the set of jobs rejected by A on (S’US’). Consider the optimal memoryless
priority algorithm A% (as in the proof of lemma 3.8.7). Say that A% (S'US) = SZ% US’;%
(as in lemma 3.8.4). By lemma 3.8.4 we have that profit(A%(S")) = profit(SgﬂRl).
Since A and A are optimal on S we have that profit(A(S")) = profit(A%(S")).
Also, A% and A have identical runs on (S’ U S). Hence, SZARJ = S”. Therefore,
profit(A(S")) = profit(S"). O

3.9 Open problems - Conjectures

In this section we make a list of what we consider as the most interesting open questions

regarding the complexity of languages studied in this chapter.

1. The most important open question concerns the complexity of EXI1STS-OPT-GENERAL.
The straightforward algorithm shows the problem to be in ESPACE. We conjec-
ture that this language is hard for NP. Actually, if the following problem is hard
for NP then we can show that EXISTS-OPT-GENERAL is also hard for NP.

Problem 12. PARTITION (REMOVE MIN)

Instance: Say that H is a finite set of integers where: B =" _, a, m = min(H)
and there exists a partition H, Hy of H\{m} such that > . a,>
Question: Does there exist a partition H], H} of H such that ZaeH; a= ZaeH; ?

B
a<5
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2. INTERVAL-SCHEDULING(m = 1), NON-OPT-GF-INTERVAL(m = 1) and
ExX1STS-OPT-INTERVAL(m = 1): In section 3.7 we show that POLY-INTERVAL-SCHEDULING
(m =1) is complete for NL. We showed that these first three languages are in
U, — NC?. We conjecture that they are of the same complexity (w.r.t. logspace
reductions or even NC' reductions) and they are complete for some (uniform) com-
plexity class between NL and U;, — NC?. Actually, we conjecture that they are all
complete for a class which is between LOGCFL and U;, — NC?.

3. PoLy-NON-OPT-GF-INTERVAL(m = 1) and PoLY-EXISTS-OPT-INTERVAL(m =
1): We showed that both languages are in NL. We conjecture that randomization
helps for these problems. RL stands for the class of languages decided by one-sided
error randomized logspace bounded Turing Machines. Note that L C RL C NL.

We conjecture that these two languages are in RL.
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