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Abstract

We develop the theory S} +Va PHPS% (PV), where the surjective weak pigeon-
hole principle PHP{,(PV) says that there is no polynomial time computable
surjection from a onto a®. We show that the VX’ consequences of this theory
can be witnessed in probabilistic polynomial time, but that the converse is
unlikely to hold. Furthermore, if the cryptosystem RSA is secure then this
theory does not prove the injective weak pigeonhole principle for polynomial
time functions. We use this observation to show that if RSA is secure then
the theory PV + (sharply bounded collection for PV formulas) lies strictly
between PV and S} in strength. We also give some unconditional indepen-
dence results for the relativized version of S} +Va PHPY,(PV). In particular,
it does not prove the injective weak pigeonhole principle for an undefined
function symbol.

We define a hierarchy of theories of arithmetic with a top, and use them
to study the structure of a model M of bounded arithmetic by studying
the relationships between its initial segments. We show that if the weak
pigeonhole principle fails then for suitable b > a" the initial segment M | b
is definable inside M [a and hence is the unique end-extension of M [a to a
model of arithmetic with a top (of this form). Conversely if any model K of
arithmetic with a top is definable inside M then either K is isomorphic to an
initial segment of M or vice versa, and the weak pigeonhole principle implies
that the first of these holds. We also use some tools from general model
theory to show that if the weak pigeonhole principle holds in a model of a
weak theory of arithmetic with a top, then initial segments have more than
one end-extension; in a model of a strong theory of arithmetic with a top,

we can construct uncountable end-extensions of countable initial segments.
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1 Introduction

This chapter contains a small amount of background material and a brief
account of my research and the conclusions I have drawn from it. Technical
details follow in the body of the thesis.

This work is motivated by the question, in which subtheories of [Ag + €24
can the weak pigeonhole principle be proved? 1A, + €2; was first considered
by Wilkie and Paris [29] as part of a programme of research into the power
of arithmetic without exponentiation. They began by studying IA,, but
this can define no function that grows faster than a polynomial and hence
lacks some attractive properties of arithmetic. It cannot, for example, prove
that you can uniformly substitute a term for a variable in a formula. This
operation has a growth rate of something like > 2'°82% which is precisely
what the axiom €2; provides.

There are many mathematical principles that can be stated in the lan-
guage of IA; (and many more in the language of IAg+ €y, which can express
anything in the polynomial hierarchy) but whose normal proofs involve the
existence of much larger objects than these theories allow. Two examples
are the unboundedness of the primes, normally proved using a factorial, and
the pigeonhole principle, normally proved using counting, where the code
for the counting function will be exponential in the size of the set counted.
Paris, Wilkie and Woods in [21] showed that IAg + € proves a weak version
(WPHP) of the pigeonhole principle, of the form “there is no injection from
n? into n” and that 1A, together with this principle proves that the set of
primes is unbounded.

It is open whether IA(+€; is any stronger than IA, in terms of which II;
sentences it can prove. WPHP is a candidate for a II; sentence unprovable
in IAy. We say something about this in the later chapters of this thesis, but
to keep things in order we will first look at a different approach to bounded
arithmetic.

This is as a source for logical characterizations of complexity theoretic
problems. Buss in [3] defined a hierarchy X! of bounded formulas and a
hierarchy S% of theories, whose union is IAg + €1, such that the functions !

definable in S are precisely those at the ith level of the polynomial hierarchy.



The axiom €2y corresponds to the polynomial relationship between the length
of the input to a machine and the length of its computation. It is open
whether the S% hierarchy collapses to a finite level and an answer either
way would have consequences in complexity theory. If it collapses, then so
does the polynomial hierarchy; if it does not, then we have a reasonably
well-behaved model of arithmetic in which P # NP.

In chapter 2 we give these definitions and also define a theory PV which
directly axiomatizes the important properties of polynomial time functions.
We prove the witnessing theorem for S; (theorem 2.17) by first proving an
easy witnessing theorem for PV (theorem 2.10) and then showing that S is
conservative over PV for a certain class VAPV of formulas (corollary 2.16).
We make use here of a collection principle BB(PV) (definition 2.12), provable
in SI, that has the consequence that ¥t formulas are equivalent to bounded
existential PV formulas. The second section of this chapter contains a general
result about witnessing theorems, that if a theory and a complexity class
correspond (in the way that S; and P do) then that complexity class has a
complete language. The last two sections set out some definitions of theories
of arithmetic with a top that we will use later.

In this situation it is natural to consider WPHP for ¥} functions or poly-
nomial time functions (or functions given by oracles) and to ask at what
level of the S¢ hierarchy (or the relativized hierarchy) these are provable. We
also have to distinguish between the injective WPHP, saying that there is no
injection in a given class from n? into n, and the surjective WPHP, saying
that there is no surjection in a given class from n onto n? (these are easily
seen to be equivalent for A functions in 1A).

In chapter 3 we define four versions of the weak pigeonhole principle and
prove them (for undefined or X% definable functions) in S5 (corollary 3.3).
This is followed by a result that we will use throughout this thesis, that, given
a and b > a?, any injection a®<a (surjection a— a?) can be amplified to an
injection b < a (surjection a — b) of the same complexity (lemmas 3.6 and
3.7). We then look in some detail at the theory S5 +Va PHPZ:(PV), that is,
S3 together with the surjective WPHP for PV formulas. We show that the
V3¢ consequences of this theory can be witnessed in probabilistic polynomial
time (theorem 3.11) but that it is unlikely that the A’ definable sets in this



theory capture everything in the complexity class ZPP (theorem 3.13). On
the other hand, we show that if we can easily witness the injective WPHP
for PV formulas, then we can crack RSA (lemma 3.15). We conclude that if
RSA is secure then surjective WPHP does not prove injective WPHP in this
case. See also chapter 5 where we prove a similar result unconditionally, in
the relativized case.

In chapter 4 we return to the principle BB(PV). In the first section we
show that if PV +BB(PV) is as strong as S, then the S} hierarchy collapses.
In the second section we show that if the surjective WPHP holds in a suitable
model of PV, then initial segments of that model have more than one end-
extension to models of PV (lemma 4.4). On the other hand we show that if
PV proves BB(PV) then such end-extensions are unique in models of PV in
which the injective WPHP fails (the proof of theorem 4.5). Together with
the results of chapter 3 this means that if RSA is secure then PV + BB(PV)
lies strictly between PV and S in strength.

In chapter 5 we prove some independence results for relativized theories.
They are of the form: theory T cannot prove that a certain property holds of
a structure defined by our new symbols on an interval [0, a). We prove them
by relating them to a problem in complexity theory: what can a polynomial
time Turing machine discover about a finite structure that is given by oracles?
In the first section we give an old general criterion for unprovability from
the relativized version of S? (theorem 5.3) in the second section we show
that the injective WPHP for a new function symbol is not provable from
the relativized version of S3 + Va PHP% (PV) (corollary 5.6) and look for a
general criterion for unprovability from this theory.

In the remaining half of the thesis we turn from looking at problems
explicitly involving complexity theory and polynomial time to looking in
detail at the models M of fragments of 1Ay 4 €2;. Our method is to consider
M as the union of its chain of initial segments (by which we mean the initial
segments of the form M | a, that is, with domain {x € M : x < a}, for
a € M). These will be models of some kind of theory of arithmetic with a
top element. Rather than study M or its theory directly, we study models of
arithmetic with a top and ways of fitting such models together. We do not

lose anything important by doing this because in general we are interested



in bounded sentences, and any bounded sentence true in M will be true in
some initial segment of M (although we have to be careful what we mean by
“bounded”).

Models of arithmetic with a top (by which we mean various related the-
ories) have three main advantages here over models of fragments of IA,.
Firstly, it is very clear how much quantification is being used by a formula.
Secondly, there is no need to distinguish between bounded and unbounded
formulas, since every quantifier is bounded by the top element. This allows
us to manipulate such structures using tools from model theory that would
not work otherwise; for example initial segments of models of 1A, have de-
finable Skolem functions. Thirdly, models of arithmetic with a top exist
on bounded domains inside models of arithmetic (with or without a top)
and so can be manipulated using bounded formulas, allowing us to do some
formalized model theory; see chapter 7.

We could summarize the results of the second half of this thesis as follows:
WPHP holds in a model of arithmetic if and only if larger initial segments
of the model are “more complex than” or “contain more information than”
small initial segments.

In chapter 6 we show that if any version of WPHP fails between a and
a? in a model K of S} of the form [0,al®) then for any k& € N there is an
end-extension .J of K to a model of S¢ of the form [0, al*") definable inside
K (theorem 6.6). Furthermore .J is the unique such end-extension, up to
isomorphism over K. A consequence is that in a model of S3 in which WPHP
fails, increasing the interval our quantifiers range over (up to a certain point)
does not increase the complexity of the 3¢ sets we can define (corollary 6.8).

In chapter 7 we look for a converse to the “definable end-extension” part
of theorem 6.6. We show that if a model J of arithmetic with a top is
definable inside a model K of Si, then J is definably isomorphic to an initial
segment of K, or vice versa (theorem 7.4). If WPHP is true in K then it is
the first of these that holds and the initial segment is unique; hence in models
of S3+WPHP we can precisely count sets if they come with sufficient internal
structure (corollary 7.8). However, a precise converse of this part of theorem
6.6 is impossible (see the remark after corollary 7.6).

In chapter 8 we consider the consequences for a structure of the presence



or absence of a definable surjection from a subset P onto the whole structure.
This is a generalized version of the surjective WPHP. We use some tools
from abstract model theory, but most of the interesting applications are to
models of PA™P and hence, indirectly, to IAy. In the first section we look for
converses to the “unique end-extension” part of theorem 6.6. This works for
models of PA™ (corollary 8.3) and we obtain a partial converse for models
of S§ (corollary 8.7). In the second section we characterize WPHP in terms
of the possible cardinalities of initial segments of a model (corollary 8.13)
and construct an uncountable model of Sy in which the polynomial size sets
are precisely the countable sets (corollary 8.14).

This completes the description of the body of this thesis. The material
in chapters 4, 6 and 8 and part of chapter 3 has already appeared as [28].



2 Bounded Arithmetic

In the first section of this chapter we define the ¥¢ formulas, the S¢ hierarchy
and a theory PV which directly axiomatizes the important properties of
polynomial time functions. We prove the witnessing theorem for S (theorem
2.17) by first proving an easy witnessing theorem for PV (theorem 2.10)
and then showing that Si is conservative over PV for a certain class VAPV
of formulas (corollary 2.16). We make use here of a collection principle
BB(PV) (definition 2.12), provable in S}, that has the consequence that X
formulas are equivalent to bounded existential PV formulas. The second
section contains a general result about witnessing theorems, that if a theory
and a complexity class correspond (in the way that S) and P do) then that
complexity class has a complete language. The last two sections set out some

definitions of theories of arithmetic with a top that we will use later.

2.1 The theories Si and PV

Our initial language consists of the constants 0 and 1 and the function sym-
bols +, -, <, | | and #. The intended interpretation of the length |z| of
is the number of digits in the binary expansion of z. So for example 2¢ has
length i+ 1 and 2° — 1 has length i. The intended interpretation of the smash
function # is a#y = 2/#'¥l. We will sometimes use the (informal) notation
#x for the cut glel”,

We take a theory BASIC fixing the algebraic properties of these symbols.
See [3] or [13] for a list of axioms or, for a similar theory for a relational
language, see definition 2.24.

In this thesis we will use two different definitions of bounded quantifiers
and bounded formulas. Term-bounded quantifiers are appropriate when we
want to model the effects of having computational resources available that
are polynomial in the size of the input, and variable-bounded quantifiers
when we want to model the effects of fixed computational resources. This
corresponds to the difference between arithmetic with the smash function
and arithmetic with a top. Term-bounded formulas will make no sense in a
model with a top, and in general the bounded sets definable by term-bounded

formulas are the same as those definable by variable-bounded formulas, so
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we will not always be careful to distinguish between the two types.

Definition 2.1

1. A term-bounded quantifier is a quantifier of the form Jx <t or Vo<t

where t is a term in +, -, | | and # that does not contain x.

2. A wvariable-bounded quantifier is a quantifier of the form 3z <y or

Ve <y where y is a variable distinct from x.

3. A sharply bounded quantifier is a quantifier of the form 3x < [t| or

Vo< |t| where t is a term that does not contain .

Definition 2.2
1. A formula is Aqg if all of its quantifiers are variable bounded.
2. A formula is sharply bounded if all of its quantifiers are sharply bounded.

3. A formula is X if it contains no unbounded quantifiers and i — 1 alter-
nations of term-bounded quantifiers beginning with an existential quan-

tifier and ignoring sharply bounded quantifiers. The 112 formulas are
defined dually.

4. A set in a structure is A if it is defined by both a X! and a 11° formula.

Definition 2.3 Fori > 1 the theory S is BASIC together with the X —LIND
axioms, consisting of

¢(0) AV <[yl ((x) = ¢z + 1)) = ¢(Jyl)

for each ¢ formula ¢ with parameters.
The theory Sy is the union of the theories S}.

The most important property of Sj is its ability to manipulate sequences
of numbers. In particular, the function w; = z, “w encodes a sequence of

numbers and x is the ith element in the sequence”, is X definable.



Proposition 2.4 (Buss [3]) There is a X5 formula Comp(e,z,t,w) that
expresses “wy, ..., wy encode the first |t| configurations of the Turing ma-

chine e run on input x”. Furthermore
Sy = Ve, z,t 3w Comp(e, z,t, w).

Hence if f¥ is any polynomial time function computed by the Turing machine
e with time exponent k for e,k € N then the function f* is X% definable in
Ss, by the formula

fH(x) = y < Jw Comp(e, z, 2 w) A Wigk = Y.

Here we express 9ll* using nested smash functions. We need to refer to the
machine e (rather than just to the function that it computes) because we

want to extend the function in the natural way to take nonstandard inputs.

Definition 2.5 The language Lpyv of PV function symbols consists of a func-
tion symbol f¥ for every (standard) Turing machine e and every (standard)
time exponent k.

The theory S3(PV) consists of Sy with the addition of all the PV function

symbols and with extra axioms
f¥(z) =y + Fw Compl(e, z, QWC, W) A Wk =Y
expressing that the function symbols have the correct interpretations.

Clearly S3(PV) is conservative over S3. We will use these two theories

interchangeably.

Definition 2.6 The theory PV consists of the universal consequences of
S3(PV) in the language Lpy.

Proposition 2.7 PV proves “polynomial time recursion”. That s, for all
g, h’ak € LPV; Zf

PV EVY,i,2lg(i,z,9)| < |z| + [k(y)]
then there is f € Lpy such that

PV VY, z,i,2, f(0,2,7) = hz,g) A\Vi<|z| f(i+1,2,9) = g(i, f(i,x), 7).



Just as the recursive functions can be defined syntactically as the closure
of certain basic functions under composition and recursion, so the polynomial
time functions can be defined as the closure of certain basic functions under
composition, renaming and permuting of variables and a form of polynomial
time recursion. Usually PV is defined as a theory formalizing this way of
building up polynomial time functions, but our definition turns out to be
equivalent. See [6], [3], [13].

Definition 2.8
1. The PV formulas are the quantifier free formulas in the language Lpy.

2. The F'PV formulas are those that consist of term-bounded eristential
quantifiers (+, - and # are in polynomial time, so there are PV function
symbols for them) followed by a PV formula.

3. The theory PV —LIND consists of PV together with the aziom
¢(0) AVz <|y| (p(x) = ¢(z + 1)) —= ¢(|y])
for each PV formula ¢ with parameters.

Proposition 2.9 PV proves that the PV definable sets are closed under con-

Junction, negation and sharply bounded quantification.

Proof Testing the truth of a sharply bounded quantifier only needs a poly-

nomial number of steps. O

Since PV is a universal theory, we can easily prove a witnessing theorem
for it (essentially just Herbrand’s theorem). We will then go on to show that
S, is VAPV conservative over PV, and deduce Buss’ witnessing theorem for

Sy. For a general treatment of proofs of this form see Avigad [1].

Theorem 2.10 If PV F Va 3y ¢(x,y) for a PV formula ¢ then there is a
PV function symbol f such that PV FVz ¢(x, f(x)).

Proof Suppose the theorem fails and PV = Vz 3y ¢(z,y) but for each PV

function symbol f we have
PV Vz ¢(z, f(z)).
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Consider the theory I'(c) = PV + {—=¢(c, f(c)) : f € Lpyv}. This theory is
finitely satisfiable, since otherwise for a finite set fi,..., f, of PV function

symbols we would have

PV Vz \/ ¢(z, fi(z))

=1

which implies
PV FVz ¢(z, F(x))

if we let F' be the PV function symbol for the polynomial time machine
that applies fi,..., f, to z in turn and stops when it finds f;(z) such that
o(z, fi(z)) holds (which we can check in polynomial time).

Let J be a model of I'(¢) and let I be the submodel of J whose domain
is the closure of {c} in J under all PV function symbols. Then I F PV
(since PV is a universal theory) and I F Vy—¢(c,y). But this contradicts
our assumption that PV  Vz Jy ¢(z, y). O

Theorem 2.11 (Zambella [30]) The theory PV + FPV—LIND is V3PV

conservative over PV.

Proof Let M E PV be countable. We will construct an 3-elementary (in
the language of PV) extension of M to a model N of PV such that for every

PV formula with parameters there is a PV term f with parameters such that
N E Ve 3y d(a,y) — Vo oz, f(2)).

It will follow that N F 3PV —LIND and this is sufficient for the theorem.

Let Ty be the universal theory of M in a language expanded to in-
clude names for all the members of M (so that any model of Ty will be
an J-elementary extension of M). Let ¢y, ¢y, ... be a countable collection of
new constant symbols; add these to the language and enumerate as ¢, ¢1, . . .
all the PV formulas in this expanded language.

We will construct a sequence 1Ty C 17 C 15 C ... of consistent, universal
theories. Suppose that T; has been constructed. If T; - Va 3y ¢;(x, y) then
let T;11 = T;. Otherwise, let T,y = T; + Yy —¢;(c;, y) where ¢; is a constant

that does not occur in 7; or ¢;. In either case, T;,; is consistent.

11



Let 7" = ;e T3 Then T' is consistent and has a model M'. Let N be
the substructure of M’ given by the set of elements named by terms in the
expanded language. Then N E T, since 7' is a universal theory.

Now let ¢(z,y) be any PV formula with parameters from N and suppose
N E Vz 3y é(z,y). By our construction of N, ¢ must appear in our list as
¢; for some i. It cannot be the case that Yy —¢;(c,y) € T for any constant
¢, so we must have T F Vz Jy ¢;(z, y). By Herbrand’s theorem there are PV

function symbols fi,..., f, with parameters such that
T =V \/ ¢i(x, f;(x))
7=1

and since we can check whether ¢;(z, f;(z)) holds in polynomial time we can
combine these, as in the proof of theorem 2.10, into one PV function f such
that

T =V i(x, f(x))

as desired.
We now use this property to prove that N F FI°PV—LIND. Let ¢(z,y)
be any PV formula, in which we suppose for the sake of clarity that y is

implicitly bounded. Suppose
NE 3y ¢(0,y) ANV <|a| By ¢(z,y) = Iy o(z +1,9)).
We can rewrite the second conjunct as
N E Vo <|a|Vy 3y (6(z,y) = oz +1,9'))
and hence, by the construction of N, for some PV function f with parameters

N EVz<|a|Vy (d(z,y) = d(z + 1, f(z,y)).

Using the recursion available in a model of PV we can iterate the function

f |al-many times and from the witness y for Jy ¢(0, y) successively find wit-
nesses y for Iy ¢(1,y), Iy ¢(2,y), ..., Iy é(lal,y). [

12



Definition 2.12 Sharply bounded collection for PV formulas, or BB(PV),

is the aziom scheme
VaVy Vi<|z|Iz<y ¢(i, 2) — JwVi<|z| (i, w;)
for all PV formulas ¢ with parameters.

This is provable in Si. Over PV it implies that every ¢ formula is
equivalent to an 3°PV formula, since it allows us to move all the existential
quantifiers to the front. However we have found no proof that the converse
holds:

Open Problem 2.13 Is BB(PV) implied over PV by the principle, every

Y8 formula is equivalent to an 3°PV formula?
Lemma 2.14 PV + 3FPV-LIND - BB(PV).

Proof Suppose that Vi < |z| 3z <y ¢(i,2). Then use FPV—LIND on j in
the formula Jw <y’ Vi< j ¢(i, w;), which is equivalent to a F°PV formula by
proposition 2.9. 0]

Corollary 2.15 The theory PV +3"PV—LIND proves that every ¥ formula
is equivalent to an PV formula. Hence PV + FPV—LIND F SJ.

Together with theorem 2.11 this gives
Corollary 2.16 S; is V3PV conservative over PV.

We derive the witnessing theorem for Si as a corollary of this.

Theorem 2.17 (Buss [3]) Suppose S+ Va Iy ¢(z,y) for a X° formula .
Then there is a PV function symbol f such that Sy =V ¢(z, f(z)).

Proof Thereisan 3°PV formula 1 such that Si - Va Vy, ¢(x,y) < ¥(x,y).
Hence S - Vz dy(z,y) and so by corollary 2.16, PV + Vx Jy ¢ (z,y). By
theorem 2.10, PV  Vz¢(x, f(z)) for some PV function symbol f. Hence
Sy EVz o(z, f(z)). O
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Corollary 2.18 The subsets of N in P are precisely the subsets that are A®
definable in Si, that is, definable by a X% formula that is provably equivalent

to a 11 formula in Si.

We will also consider relativized theories, to which we have added extra
function or relation symbols that are not defined in terms of our normal lan-
guage. These are analogous to complexity classes that have been relativized
to an oracle.

We look at these for two reasons. The first is that a structure in +, -
etc. is rigid in a certain sense. The different parts are interconnected in
subtle ways and it is difficult to modify an existing model or create a new
one. But there are lots of ways to make new models by adding new symbols
that satisfy the relativized theory. This should become clear in chapters 5
and 7. It is easy to prove independence results for relativized theories and
hard for unrelativized theories. The second reason is to study the strength
of our induction axioms by looking at what they can prove about a larger

class of structures than the ones we can define in our language.

Definition 2.19 Let « be a new function or relation symbol, or a set of such
symbols. The ¥t(a) formulas are the same as the Xt formulas except that we
allow the symbols from o to occur. Si(c) is Sy with the addition of the LIND
aziom for all X%(c) formulas, and axioms stating that the new functions are
bounded by terms in # and so do not grow too quickly. Sy(c) and IAq(«)

are defined similarly.

The functions computed by polynomial time oracle machines are ¢ ()
definable in S] () in the same way that the functions computed by machines

without oracles are X2} definable in S}, which leads to the following definition:

Definition 2.20 The language Lpv(«) contains a function symbol for every
polynomial time Turing machine with oracles for the functions and relations
in . In particular Lpy(a) contains all the functions in « and the charac-
teristic functions of all the relations in . The theory PV («) consists of the
universal consequences of Si(a) in this language, analogously with the defi-
nition of PV in terms of Sy. We will often refer to members of Lpyv(a) as

PV(a) function symbols.

14



All the results in this section also hold for the relativized versions of the

formulas and theories; no substantial changes to the proofs are needed.

2.2 A witnessing theorem implies a complete language

We include here a general result about witnessing theorems, by which we
mean theorems showing that the sets or functions definable in a certain
theory correspond precisely to the sets or functions in a certain complexity
class; our canonical example is corollary 2.18. Our result is roughly that
if there is such a correspondence then the complexity class has a complete
language. We will use this in chapter 3 to show that it is unlikely that
there is a witnessing theorem matching the theory S3 + Va PHPZ (PV) with
probabilistic polynomial time.

We give two versions. The first works for a specific kind of theory but for
any complexity class; the second for a specific kind of complexity class but

for any theory. We present these results in relativized form.

Theorem 2.21 Let F be a class of functions and T =gep Sa(a) + 7 be a
sound extension of Sy(a) by a single axiom T consisting of a block of univer-
sal quantifiers and term-bounded existential quantifiers followed by a sharply
bounded formula, possibly containing ae. We assume that o is a one-place re-

lation symbol. Suppose there is an oracle set A (which we will use to interpret
«) such that

1. If f € F then f is X8(«) definable in T, that is, there is a ¥4 () formula
o(z,y) such that T+ Va y ¢(x,y) and (N, A) EVr o(z, f(x));

2. If T = VxIyo(z,y) for ¢ € ¥4(a), then there is f € F such that
(N, A) F Vz ¢(z, f(z)).

Then F contains a complete function under logspace reducibility.

Proof Assume 7 is of the form

Ya; dby <ty (al) ... Yay 3b <tk(a1, ceey Clk) 9(6_1, B)
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where 6 is sharply bounded and may contain the symbol . Let hy,..., hg

be new function symbols, and write 6*(a, h(a)) for the formula

9(&, hl(al)a h’?(alaa/?)) ) hk(ala R ak)))
A hl(al) <t1(a1) VANIAAN hk(al, .. .,Clk) <tk(a1, RN ak)

so that for a sentence o not containing any hs,
Tro < Sy(a)+Vab*(a,ha))t o
Now let p(z,e,t,w,q,r, z) be a formula expressing the conjunction of

1. wis a length-|¢| computation of the oracle Turing machine e with oracle
tapes for a, hq, ..., hy on input x with oracle queries ¢ and replies r and

with output z;

2. At the jth computation step, queries [a(q])?], [hi(gf) =7],
holgj, ;) =71, ..., [he(qj,....qf) =?] are made, with replies

.y 7";? respectively;

3. At each such step, (r] = 1 A alq))) vV (r] = 0 A —alq))),

0(qj, - qf,rj, ... rF) and 7j <ti(gj) A... ATF<ti(qj,...,q}) hold.
Notice that this formula states that the replies to the queries to a: are correct,
but not that the replies to queries to h; are correct. In fact the symbols
hy,...,h; do not appear in p, and we only use them in the description as
convenient names for the oracle tapes.

The formula p is ¥%(a) and
S%(a) + Va 6" (a, B(d)) -V, et Jw, q,r, zp(x, e, t,w, q,r, 2).

This is proved by X%(a)—LIND on [t|. To use this we must give bounds for
the existential quantifiers: w is bounded by a polynomial in ¢ (assuming that
the Turing machine looks at one tape square at a time), ¢ and z are bounded
by w and r is bounded by a polynomial in q. We can guarantee that 3 holds
by replying truthfully to oracle queries.

So, by assumption, when « is interpreted as A there is f € F which

witnesses this sentence. That is,
f:(z,et) = (w,q,r, 2)
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and in addition there is g € F with
g:(z,e,t) — zpay

where 2,1 is the k£ + 1st element of z considered as a sequence. We claim
that ¢ is our complete function.
To see this, take any function ¢ € F. By assumption i is defined in 7" by

some Y (a) formula ¢(z,y), so

Sy(a) + 7 F Va 3y ¢(x,y)
= S (a) +Vab*(a,h(a)) F VY Iy ¢(x,y)
= Sy (a) - Va, Ja—-0*(a, h(a)) v Iy ¢(z, y)

and by the relativized version of the witnessing theorem 2.17 there is a poly-
nomial time oracle machine e with input = and output (a,y) such that for

all inputs = and oracles A, H
(N, A, H) F =0"(a, h(a)) V é(z,y).

Let (w,q,r,2z) = f(x,e,2|“"|k), where |z|F is the polynomial time bound
of e. Then z is of the form (ay,...,ax,y). Without loss of generality, in its
computation the machine e has queried [hy(a;) =7],...,[hk(a,...,ax) =7]
and by construction the replies are such that 6*(a,h(a)) holds; use these
replies to define oracle functions Hi,..., H,. With this H we must have
(N, A, H) E ¢(x,y) since we cannot have (N, A, H) F —0*(a, h(a)), and y =
Zhy1l = g(x,e,?"”‘k). So i(x) = g(x,e,?"”‘k), and x — (x,e,?"”‘k) can be

computed in logarithmic space. 0]

Our second version of this result uses the properties of the complexity
class rather than the properties of the theory. Since we want it to work
for more than one such class, we need a uniform way of defining complex-
ity classes. We use the idea of a leaf language class; for a more thorough
introduction to these see [2], where they are called C-classes.

A computation tree is the non-deterministic equivalent of a computation
path. We will assume computation trees are always complete binary trees.
The two different branches leading from each node correspond to the non-

deterministic choice. The leaf at the end of a path is labelled 0 or 1 depending

17



on whether that sequence of choices ends in acceptance or rejection of the

input.

Definition 2.22 For a nondeterministic polynomial time oracle Turing ma-
chine (NDTM) M, x € N and E C N let T(M,x, E) be the word consisting
of the labels on the leaves of the computation tree of M on input x with oracle
E, in lexicographic order of the computation paths.

For disjoint sets A, B C {0,1}* the leaf language class CE(A, B) is the
set of languages L C N for which there exist a NDTM M such that for all x

re€lL<—T(Muz,E)ec A
r¢ L<=T(M,z, FE) e B.

For example P = C(1*,0%); NP = C(A,0*) where A is the set of strings
containing at least one 1; BPP = C(B, () where B is the set of strings
containing at least twice as many 1s as Os and C' is the set of strings containing
at least twice as many 0s as 1s.

The following is partly inspired by a proof in [12].

Theorem 2.23 Let T be any theory in any language, E C N and ®,I" any

two classes of formulas in one free variable x. Suppose there is a leaf language

class C = CE(A, B) such that
1. T-proofs are recognizable in polynomial time;

2. C consists precisely of the subsets of N expressed by formulas ¢p(x) €
for which there is some formula v(x) € ' such that T & ¢(z) <> v(x);

3. If a formula ¢ € ® expresses a language in C and 7 is a T-proof of
é(x) <> y(x), for v € T, there is a NDTM M, with access to the oracle
E which witnesses, as in the definition of a leaf language class, that
the language expressed by ¢ is in C. Furthermore pairs (7, M) can be

recognized in polynomial time.

Then C has a complete language.
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Proof Call a tuple (7, M, a, 2'“‘k) well-formed if w is a T-proof of ¢(x) <>
v(z) for some ¢ € & and v € T, M is a description of a NDTM, M = M,,
and |a|* is a time bound for M on input a.

Let K be the language consisting of all well-formed tuples (7, M, a, 2‘“"“)
for which T'(M,,a, E) € A. We claim that K € C.

Without loss of generality, there is a language J € C with J # N. So
there is a NDTM I and a number z € N\ J such that T'(/, 2, E) € B. Let N
be the machine which, on input o = (7, M, a, 2‘“|k) first checks whether o is
well-formed. If so, it then simulates the machine M acting on input a. If not,
it instead simulates the machine [ acting on input z. By our assumptions,
N is computable in polynomial time with oracle E.

Now consider N running on input o. If ¢ € K, then o is well-formed,
T(M,a,F) € A, and N simulates M. So T(N,o0,F) € A. If 0 ¢ K,
then either o is not well-formed, so that N simulates I and T(N, o0, FE) =
T(I,z,E) € B or o is well-formed but T(M,a,E) € B, so T(N,o0,E) € B.
Hence the machine N witnesses that K € C.

Now take any language L € C. For some formulas ¢(x) € ®,v(z) € T
expressing L there is a T-proof 7 that ¢(z) <+ v(z). Let |z|¥ be a time bound

for the machine M, and define the logspace computable function
g:aw (m,M,,a, 2|a‘k).

The tuple g(a) is always well-formed, so a € L if and only if T'(M,,a, E) € A

(by part 3 of our assumption about C), and this is true if and only if g(a) € K
(by the definition of K). O

2.3 Arithmetic with a top

Our language will consist of the three place relations r = y+z and x = y - 2,
the two place relations x < y and |z| = y and the constants 0,1,2. We use
a relational language because + and - do not define total functions and to
ensure that initial segments of models of our theory are still models.

We define a theory BASIC' to fix the simple properties of these symbols.
Notice that no axioms (except for 2) guarantee the existence of anything

larger than their parameters.
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Definition 2.24 The theory BASIC' consists of the following axioms:
1. < 1s a discrete linear ordering;
2. 0,1,2 are the first three elements in this ordering;

3. +, - define partial functions and | | a total function (hence where these

are defined we will use function notation);
4. v+ 1=y <y is the successor of x; v -1 = x;
borx+y=zoytr=z;0y=24y-x=2;

6. If (x+y)+2 = w then y+z and x+(y+2) are defined and x+(y+2) = w;

simalarly for -;

7. If x - (y + z) is defined then x -y, x - z and their sum are defined and
r-(y+2)=x-y+x-z; similarly for multiplication on the left;

8. x+0=x and x -0 =0 (the rest of the normal inductive definitions of
+ and - follow from azioms 4,5,6 and 7);

9. [0]=0 and |1| = 1;

10. ©#0— (|12 x| = |z|+ 1A 2.2+ 1] = |z| + 1) and when the left hand
side of either of the conjucts is defined, so is the right hand side;

11. If v < yA(z+y is defined ) then (2 +x is defined and z+x < z+y); if
T <yAN0<zA(z-y is defined ) then (z-x is defined and z-x < z-y);

12. z <y — x| < |y|;

13 r<ye20<z<yrhe+z=y);
Y. |z|+1< |yl — 2z exists;

15. y(x=2-yvVoe=2-y+1).

Definition 2.25 R is the theory consisting of BASIC' together with an ax-
tom stating that there is a greatest element. A model of R is said to be of the

form [0,e 4+ 1) if it has a greatest element e.
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We will define a new class of formulas, the X! formulas. These are very
similar to the X! formulas but their syntax is more appropriate for models
with a top element, since we will use variable-bounded rather than term-
bounded quantifiers. In models with a top this comes to the same thing
as using unbounded quantifiers. We also need to change the definition of
“sharply bounded” in this context:

Definition 2.26 A quantifier is sharply bounded if it appears in the form
Ve<|ylF or Iz < |y|¥ where x and y are variables and k € N.

This definition is equivalent to our earlier definition of sharply bounded,
in the structures that we consider. It does not quite work as it stands,
since | | and - are relation rather than function symbols. So for example

Jz < |y|? ¢(z,y) written out fully is
Jadb(a=|y/Ab=a-aANTz(z <A @(z,y))).

This will not cause any problems, since in models of our theories | | will
always define a function and multiplication will generally be a total function

when restricted to lengths.

Definition 2.27 A formula is £¢ if it contains no unbounded quantifiers and
1 — 1 alternations of variable-bounded quantifiers beginning with a bounded
ezistential quantifier and ignoring sharply bounded quantifiers. The T1° for-
mulas are defined dually. A set in a structure is Ab if it is defined by both a

3t and a 11? formula.

Definition 2.28 For i > 1, Si is the theory consisting of R together with

the length induction axiom
[([2|*exists) A ¢(0) A Vo <|z]* ($(x) = bz +1))] — 6(]2[")

for all 32 formulas ¢ and all k € N; z is a parameter and ¢ may possibly
contain other parameters. The set of length induction azioms for ¥ formulas
is called 2—LIND.,
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The theory S§ is strong enough to prove that we can consider numbers
as codes for binary sequences. In S} we can prove that any short binary
sequence defined by a A? formula is coded by some number. The proofs are
standard; we just need to be careful that we do not need to use any large

numbers. They are included as the last section of this chapter.

Definition 2.29 PA™P s R together with an aziom scheme stating that ev-

ery Ay set, and hence every definable set, has a least element.

Given a model of K F PA™P of the form [0, a), we can construct a (unique)
end-extension of K to a model of PA*™P of the form [0, a®) by defining natural
+ and - relations on K x K. Repeating this construction countably many

times, we get

Proposition 2.30 Any model of PA™ has an end-extension to a model of

IAy. Hence PA*P and 1A prove the same 11, sentences.
This is proved in [8], where it is attributed indirectly to Paris.

We will also use relativized versions of these formulas and theories. These
are defined analogously with X?(«) and Si(«) (see definition 2.19). The only
difference is that we do not need to add axioms limiting the growth rate of
any new functions we introduce, since their ranges are automatically bounded

by the top element.

2.4 Bootstrapping S}

We show that we can perform the basic operations of coding and decoding

sequences in S;.

Lemma 2.31 Let K F S} have greatest element e. Then the following are

true in K.
1. The relation parity(x) = § given by
0=1ATy2-y+1=2)V(E=0ATy(2-y=1))
defines a function.
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10.

11.

The relation | 5| =y given by
2 -y + parity(z) = x
defines a function.
The relation 2° = x given by
Jy, lyl=iA|z|=i+1Az=y+1

defines a function, for i < le|.

. Foralli < le| and all y, |y| < i+ y <2

The relation decomp(z,i) = (y, z) given by
ly| <iANos=y+2" 2
defines a function, for i < le|.
For all i, with i + j < |e|, we have 2¢ - 27 = 217,

The relation MSP(x,i) = z (standing for Most Significant Part) given
by

Jy decomp(z, i) = (y, 2)
defines a function, for i < le|.
The relation bit(x,i) = § given by
d = parity(MSP(z,i — 1))
defines a function, for 1 < i < le|.
Let ¢(i) be any Ab relation. Then, if K F ¥% —LIND, we have
Vo Jw (V1<i<]e|, bit(w,i) =1 > (bit(z,i) = 1 A ¢(7))).
Va V!, (Vi<le|bit(z,i) = bit(a’,4)) — = = 2'.
Vi< le| V1< < le| (bit(2F — 1,5) = 1 ¢ 5 < 9).
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12. Let ¢(i) be any Al relation. Then, if K F X% —LIND is of the form

[0,2%) for some i, there is w in K such that
Vi<i<lel, bit(w,i) = 1 <> ¢(3).
Proof We make implicit use of the axiom guaranteeing that +, - and | |
define partial functions.

1. By axiom 15 at least one of parity(z) = 0 and parity(xz) = 1 is true.
Suppose both were true and for some y,y’ € K we had v = 2 -y =

2-y" + 1. Then
2.y <2y by axiom 4
=y <y by axiom 11
=3>0y +z2=y by axiom 13.

If z > 1 then by axiom 11, ' +z > ¢/ 4+ 1; so if either z =1 or z > 1
we have y > ¢’ + 1. Hence

2-y>2-(y'+1) [and RHS is defined] by axiom 11

= 2.y >2-y +2[and RHS is defined] by axiom 7
=29y +1>2-y+2 by assumption

=2y +1>02-y+1)+1 by axiom 6

but this contradicts axiom 4.

2. By axiom 15 there is always at least one such y. Suppose

2 -y + parity(z) = 2 = 2 -y + parity(z).
=2.-y=2-9 parity(z) is 0 or 1
=y=1y by axiom 11.

3. We will first use X% —LIND to show Vi < |e| 3z 2¢ = z. For the base case,

|0] = OAJ1| = 1A1 = 0+1; hence 2° = 1. Also |[1] = 1A|]2| = 2A2 = 1+1;

hence 2! = 2.
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Now suppose i + 1 < |e|, i > 0 and 2° = z; that is, for some y we have
lyl=iN|z|=i+1Axz=y+1. Then |y|+1 < |e] so 2y exists, by

axiom 14. Then

12y =yl +1<|e by axiom 10
=2-y<e by axiom 12
=2 -y + 1 exists by axiom 4
2-y+1=y|+1<]e] by axiom 10
=2-y+1<e by axiom 4
=2 -y + 2 exists by axiom 12.

Let Y =2-y+1and 2’ =2 -y+2. Then || =i+ 1,2 =4 +1 and
|2/ =12 (y+ 1) = |z| + 1 = i + 2 so 271 = /. This completes the

induction.

For uniqueness, suppose 2' = x, 2" = 2’ and 2’ > x. That is, for some

y,y' with 3/ > y we have
=y FlAz=y+1Aly|=|=in|z] = 2| =i +1.

Now ¢ > y+1 =z so |[¢| > |z| by axiom 12. Hence i > i + 1,

contradicting axiom 4.

. Let x = 2°. Then for some z, [z| =i Az =2+1. So
y<2'=>y<z=yl i by axiom 12
and
y=2=ylzi+tl1=ly >
. We will use £4—LIND on i to show that, given z,

Vi< le| Jy, zdecomp(z,i) = (y, 2).

For the base case |0] <0,2° =1 and x = 0+2°-z so we can put y = 0

and z = z.
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For the inductive case suppose i +1 < |e|, |y| <7 and z =y +2°- 2 for
some y,z. Let 2/ = [2]. Then z = 2- 2’ + parity(z). By the proof of
(3) above, 2 - 2¢ = 211, So

=2 (22 + parity(2)) +y = 2""" - 2/ + 2" - parity(z) + y.

Let y' = 2 - parity(z) +y. Now 2' - parity(z) < 2 and by (4), since
ly| < i, we have y < 2°. Hence 3 < 27! and by (4) again |y'| <i+ 1

This completes the induction.

For uniqueness, suppose y,y’ < 2!, o =y + 2/ -z = ¢/ +2' . 2 and,
without loss of generality, y < y’. We cannot have z < 2’ since then by
axiom 11 we would have y+2°-2 < 3/ +2°-2'. Hence 2’ < z so by axiom

13 for some u,v > 0 we have y/ = y+u, 2 = 2’ +v and u < ¢y’ < 2°. So

r=y+2 -2+ v=y+u+2-2 by axiom 7
=y+2-v=y+u by axiom 11
=2 .v=u by axiom 11.

This contradicts 0 < u < 2°.

. Fix i and use X?—LIND on j. For the base case, we have 2/ . 20 = 27,
Now suppose it is true for j and that i + j + 1 < |e|. By the proof of
(3), Vt<]|e| 2ttt =22 50

202t =20, 27 2 =2 g = 2T
This completes the induction.
. Trivial.

. Trivial.

. Fix 2. We will show by 3¢ —LIND that for all 0 < j < |e|,

Fw V1 <i < [(bit(w, i) =1 <> (bit(z,7) = 1 A ¢(7)))
A (4 < |le|] = MSP(w, j) = MSP(z, j))].

Note that this can be written as a £, formula.
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10.

For the base case 7 = 0, we can put w = x. For the inductive case,
suppose j < |e| and we have found a suitable w for stage j. Let
decomp(w, j) = (y, z). MSP(z,j) = MSP(w, j) = 2z so bit(z,j + 1) =
parity(z). Now we divide into two cases.

Firstly, suppose that either bit(z,j7 + 1) = 0 or ¢(j + 1) holds. Then
we let w' = w so that bit(w', j + 1) = parity(z) = bit(z, j + 1).

Secondly, suppose that bit(z,j + 1) = 1 and —¢(j + 1) holds. Then
z=2-[2] +1. Let w' =y+2-(2-[£]) (this exists, by axiom 11).
Then bit(w', 7 + 1) = 0 as required.

In either case, if j+1 < |e| then MSP(w', j+1) = 5| = MSP (=, j+1).

Lastly we must show that once we have chosen w’ the bits 1,...,7 of
w' are the same as those of w. This is true in case 1, because then

w' = w. So suppose we are in case 2 and have
_ j o oj+tl |7 " j+l %
w=y+2'+2 -Lij/\w—y—l—Q L§J

Let k < j,s0 j = k+1 for some [ > 1. Let decomp(w', k) = (u,v).
Then w' = u+2%-v, w = u+2% v+2/ = u+2*- (v+2') and parity(v) =
parity(v + 2), since [ > 1. Hence bit(w', k + 1) = bit(w, k + 1).

We will use X —~LIND to show
Vi<i<le|3j(j+i=|e] AMSP(z,j) = MSP(2, j)).

In the base case i = 1 and j + 1 = |e|. Let 2z’ = MSP(z/,j) and
z = MSP(x, j) so that x = y + 27 - 2. Suppose z > 2. Then 2/ - 2 exists
and by axiom 10

27-2| = 27| + 1 [and RHS is defined]
=j+1+1> e

which is a contradiction. Hence z < 2 so z = parity(z) = bit(z, j + 1).
Similarly 2’ = bit(z',j +1). So z = 2.
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11.

12.

Now suppose 1 <i < |e|, j+1i = |e| (so j — 1 exists) and MSP(z,j) =
MSP(z', j) = z. Let decomp(x,j — 1) = (u,v) so

r=u+2""v

= u+ 21 parity(v) + 21 2- ng.

By uniqueness of MSP, we have || = z. By definition, parity(v) =
bit(x, j). Hence

MSP(z,j — 1) = v = bit(z,j) + 2 2
and similarly

MSP(z',j — 1) = bit(2,j) + 2 - 2 = MSP(z, j — 1).
This completes the induction.

We use L5—LIND on i. The base case is i = 0. Then 2° — 1 = 0 so
all of its bits are 0. For the inductive case, suppose i + 1 < |e| and let
r=2"—1. Now

2 =2.20 =2 1 (2" = 1) + 1

and hence 27! — 1 = z + 2. Let y = 27! — 1. Then bit(y,i + 1) =1
and clearly Vj >i + 1bit(y,j) = 0. Lastly, just as in the last part of
the proof of (9), V1 <k <ibit(y, k) = bit(z, k) = 1.

By “K is of the form [0, 2°) for some i” we mean that the top element
eis (227" —1)-2+ 1. By the proof of (11) we can show that the binary

expansion of e consists of a sequence of 1s; then use (9). O
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3 The Weak Pigeonhole Principle

We define four versions of the weak pigeonhole principle and prove them (for
undefined or X% definable functions) in S (corollary 3.3). This is followed by
a result that we will use throughout this thesis, that, given a and b > a?, any
injection a? < a (surjection a — a?) can be amplified to an injection b a
(surjection a— b) of the same complexity (lemmas 3.6 and 3.7). We then look
in some detail at the theory Sj + Va PHP% (PV), that is, S together with
the surjective WPHP for PV formulas. We show that the VX! consequences
of this theory can be witnessed in probabilistic polynomial time (theorem
3.11) but that it is unlikely that the A% definable sets in this theory capture
everything in the complexity class ZPP (theorem 3.13). On the other hand,
we show that if we can easily witness the injective WPHP for PV formulas,
then we can crack RSA (lemma 3.15). We conclude that if RSA is secure
then surjective WPHP does not prove injective WPHP in this case. See also
chapter 5 where we prove a similar result unconditionally, in the relativized

case.

Definition 3.1 For a < b the following are different versions of the pigeon-
hole principle. By the weak pigeonhole principle, WPHP, we mean one of

these when b > a®.

1. The bijective PHP states that f is not a bijection from b onto a. We

will not use this very often and do not have any special notation for it.

2. The injective PHP states that f is not an injection from b into a. We
write this as

PHP!(f) = 3o <b f(z) = aV Iz, 20 <b (21 # 2o A f(1) = f(22)).

3. The surjective PHP states that f is not a surjection from a onto b. We

write this as

PHP;(f) = Jy<bVaz<a f(z) #y.
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4. The multifunction PHP states that the relation R is not the graph of

an injective multifunction from b into a. We write this as

mPHPZ(R) =Jr<bVy<a-R(z,y)
Var, e <bdy<a(xy # x2 A R(x1,y) A R(xa,y)).

There is an alternative form of this version, saying that the function f

is not a surjection from a set s C [0,a) onto b. We write this as:

mPHP? (f,5) = Jy<bVaz<a(s(z) = f(z) #y).

We write PHP(T) for the set consisting of PHP(f) for every function in

the class T' (or every relation or set, as appropriate).

In most contexts mPHP and mPHP are equivalent. For example suppose
R is a X! definable injective multifunction from b into a. Let f be the inverse
of R and s the range of R; then f and s are 3¢ definable and f is an surjection
from s onto b. We will generally prefer to use functions and the notation of
mPHP but we give our proof of WPHP for the form mPHP.

We usually consider these as axiom schemes asserting WPHP for every
function in a certain class. In this sense, version 4 is the strongest and implies

versions 2 and 3 and either of these implies version 1.

3.1 Upper and lower bounds
Theorem 3.2 (Maciel, Pitassi, Woods [17]) S3(a)FVa mPHPZQ(E’{(a)).

Proof We assume that a is a power of 2; this assumption can be removed
using the techniques described later in this section, by amplifying the function
then restricting the domain and padding out the range.

Suppose ¢ is a ¥ () injective multifunction from a? into a. The idea of
the proof is to divide the domain [0, a?) of ¢ into a intervals [0, a),[a, 2a), ...,
[a? —a,a?) and divide the range [0, a) of ¢ into two intervals [0,a/2), [a/2, a).
Either one of the intervals in the domain maps entirely into the interval
la/2,a), or every interval in the domain contains an element mapping to

something in the interval [0,a/2). In either case, we can obtain a definable
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injective multifunction from a set of size a into one of the intervals in the
range. In the first case this is direct. In the second case we do it by first
applying the multifunction which maps z < a to every element in the interval
[z-a,z-a+a) and then applying ¢ and restricting the range of the resulting
multifunction to [0,a/2). In either case, we can compose this again with
our original injection a? < a to get an injective multifunction from a? into
[0,a/2) or [a/2,a).

Let S, be the injective multifunction mapping z < a toa-w+zx if w < a
or mapping x to the interval [x-a,z-a+a) if w = a. What we have shown is
that for some w < a, the composition ¢ oS, 0 ¢ is an injective multifunction
from [0, a?) into either [0, a/2) or [a/2, a).

The proof works by iterating this construction |a| many times; each time
we can halve the range of our multifunction, while keeping the domain the
same size. We will consider numbers w in [0, (a + 1)) as codes for sequences
of numbers wy, ..., w; in [0,a+ 1). For 1 <i < |a| and w < (a + 1) define
the relation ¢ (z,y) as

Ju<a®, ¢p(x,u) Au; =y AVI<G <i, (w; < a A dla-w; +uj, )
V(wj =aANIz<ad(a-u;+ 2,ujt1));

in the notation above thisis y € (¢p0S,,0...0S5,,0005S,, 0¢)(x) (where we
apply our multifunctions from right to left, that is, apply ¢, then S,,, then
¢ again, and so on).

Consider the formula

Fv<aIw<(a+1)

(¢, is an injective multifunction from [0, a?) into [b, b+ a/2""1)).

This is X%(c). Tt is true for ¢ = 1 and we have shown that if it is true for
i < |a| then it is true for 1+ 1. Hence in a model of S3(a) it is true for i = |a|;

but this is impossible since the range will be finite. O
Corollary 3.3 Every version of WPHP (X! («v)) is provable in Si(c).

We also have a lower bound for the relativized WPHP, which we derive

as a corollary of theorem 5.3 from chapter 5.
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Theorem 3.4 No version of WPHP(f) is provable for an undefined function
symbol f in S2(f).

Proof Let ® be the following sentence, in the language consisting only of

a two-place function symbol f:

Vi, xo, x5, Ta [f (21, 22) = f(23,24) = (21 = 23 A T2 = 14)]

ANy 3y, xo f(ar,22) =y

stating that f is a bijection between the cartesian product of the universe
with itself and the universe. There is an infinite model in which & is true,
namely the natural numbers if we interpret f as the normal bijective pairing
function. Hence by theorem 5.3 there is a model M of S3(f) and an element
a of M such that M & ({[0,a), f) E ®). So f is a bijection a X a <— a and

we can define functions in M that violate all versions of WPHP. |

3.2 Amplification

Theorem 3.5 (Paris, Wilkie, Woods [21]) If K E PA™ is of the form
[0,a%) for a,e € K, ¢ > 2 and K defines a function f which is a surjection
a—»a®, then K has an end-extension to J = PA™ of the form [0,a*).

The proof of this theorem is essentially an amplification of f to a surjec-
tion @ — a*, and is similar to the amplification of a pseudorandom number
generator to a pseudorandom function generator using a complete binary tree
(see for example [7]). We give an amplification construction below that is
based on a similar idea. However we use less induction than the construction
in [21] and thus are only able to use one “branch” of a binary tree. Thus later
on in chapter 6 when we give our version of theorem 3.5 it will only allow
us to extend the size of a strucure from a® to aEQ, rather than to a® . Notice
that our amplification construction is similar to the one used to polynomially
increase the stretching factor of a pseudorandom number generator.

We remark that a proof of WPHP in S, can be derived as a corollary of
theorem 3.5. In a model M of S5, if there is a € M and a function violating
WPHP definable inside M [a, apply the theorem to M [ al®l and get a model
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of PA™P of the form [0,a”). Then WPHP fails inside the logarithmic part of
this model, which is impossible.

We prove our amplification lemma, in Sg (with a top) so that we can keep
tight control over the range of quantification used. See section 2.3 for details
of the definitions.

Lemma 3.6 Suppose j > 1 and K E Sg is of the form [0,a%) for a,e € K,
e > 2 and suppose r(x) and f(x,y) are &b formulas violating mPHP,, that
is, such that r C [0,a) and

Vy<a®Ir<a(r(z) A f(z,y) AVz<a(r(z) — Ny <a® f(z,y)).
Define g(x,y) as

Jw,w; =x AV < i<e(r(w) A f(w,y; +a-wiy))
/\T(we) N f(wsays +a- 0)

Here w; is the ith element of w, considering w € [0, a%) as code for an e-length

sequence of elements of [0, a); similarly for y;. Define s(x) as
r<aAIyg(x,y).

Then s(x) and g(x,y) are E_];’- formulas violating mPHPS..  Furthermore if
r = [0,a) then s = [0,a) and if f defines an injection on domain r then g
defines an injection on domain s. Hence we can amplify surjections a — a®
to surjections a—» af, injections a* < a to injections a® — a (by considering

the inverses of f and g) and bijections a<>a? to bijections a<>a’.

Proof The idea is to take a binary tree consisting of 2¢ nodes labelled
Wiy .no, We, Y1, -..,Ys. The root is labelled wy and for 1 < ¢ < € the node w;
has a left-hand child y; and a right-hand child w;, with the exception that
w, has no right hand child. The definition of ¢g(z, y) above describes the way
we assign numbers to the nodes. We consider the surjection defined by f as a
function F' with range r and domain [0, a) X [0, a), so that F'(v) = (v2,v3) <
f(vi,v2 + a-v3). We start at the top of the tree and set w. = F~(y.,0),
then w. | = F~'(y._1,w.), w. o = F~'(y._2,w. ;) and so on. We take x to

be the value w; at the root of the tree.
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To prove that g is a surjection from [0,a) onto [0,a®), fix y and use
S¢—LIND on k in the formula

Jw Ve — k<i<e (r(wy) A fwi,y; + a - wiyq))
N T(wa) N f(waaya +a- 0)

This mimics the process described above of finding labels w; as we work down
the tree. Take w witnessing this formula in the case £ = e —1 and let x = wy.
Then g(z,y).

Similarly, induction up the tree shows that if x € s and for some y, v’
both g(x,y) and g(x,y') hold then y, = y; for all k, so y = y'. Hence g
restricted to s defines a function.

If r =[0,a), then let x < a. Put w; = z. By induction up the tree we
can find w, y such that for all i F(w;) = (y;, w;11), since F is defined on all
of [0,a). Hence s = [0, a).

If f is an injection on r, suppose for some x, y, y’ we have that g(x,y) and
g(x,y') hold and are witnessed by w and w’ respectively. Induction down
the tree shows that w; = w} for all ¢ (or f would not be an injection) so

z=za. O

This result immediately transfers to E? functions in models of SJ and to

relativized functions and theories.
Lemma 3.7
1. For any f € Lpy there exists F' € Lpy such that
Sy FVaVbVe (Vy<a® Iz <a f(e,x) =y = Vy<bIr<a F(c,b,a,z) =y).

That is, any PV surjection a — a* with parameter ¢ can be amplified

uniformly to a surjection a—b with parameters c,b, a.

2. For any g € Lpy there exists G € Lpy such that

PV FVeVbVa< bV, <xy<bIy <y, <a?,
(G(e,bya, 1) = G(e,bya,22) VG(c,b,a,x1) > a)
= (g(c,y1) = gle,y2) V gle, 1) = a).
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That is, any PV injection a? — a with parameter ¢ can be amplified

uniformly to an injection b— a with parameters c,b, a.

Proof In part 1 the machine computing F' first finds the smallest € such
that a® > b, then constructs, and uses the surjection f to label, a binary tree
of length ¢ as in the proof of 3.6, beginning by labelling the root with the
input, working up the tree, and reading the output from the leaves. As in
that proof, X2 —LIND shows that F' is a surjection.

In part 2 the machine computing GG works in a similar way, except that
it begins by labelling the leaves of the tree with the input (considered as a
length-¢ sequence) then working down the tree, and reading the output from
the root. Again X%—LIND proves that G is an injection if g is. Since we can
write this implication in VAPV form it is also provable in PV, by corollary
2.16. O

The surjective WPHP for PV functions is in many ways the most in-
teresting version of WPHP. It has links with definability (as we see in the
next chapter) and with randomness (in the next section). Another attractive
property is that we can get rid of unwanted parameters in proofs involving it
by amplifying the range of the function used until we can enlarge its domain

to contain its parameters and still violate WPHP. More precisely,

Lemma 3.8 For any PV function symbol f(c,x), there is a PV function
symbol G(x) (with no other parameters) such that

Sy Vb (Fa<bIec<bVy<a®Ir<a f(c,x) =y — YVy<b® Iz <b' G(z) = y),

that 1s, if f wviolates surjective WPHP below b then G wviolates surjective
WPHP at b*.

Proof Suppose f(c,x) : a— a? (z here is a placeholder). Then by lemma

3.7 we have a surjection F(c,b® a,x) : a—b®. Define G so that
G : (xla Zo, T3, .'L'4) = F(xlv (1‘2 + 1)871‘37 1'4)-

Since ¢, b — 1 and a are all less than b, the range of F(c,b® a,z) on [0,a) is
contained in the range of G(Z) on [0, b)™. O
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Let u(e, x,t) be the universal PV function symbol, which calculates the

output of the Turing machine with code e run on input x for time |¢|.

Corollary 3.9 The theories surjective WPHP(PV) with parameters,
Va VeVt PHPS, (u(e, x,t))

and surjective WPHP (PV) without parameters,

{VaPHPg:(f(z)) : f € Lpv}
are equivalent over Sa.

Proof The forwards implication is trivial. For the other direction, if for
some e, t, a the function u(e, z, t) violates WPHP at a, choose b > e, t,a* and

use lemma 3.8 to find a parameter free function violating WPHP at b*. [

It would be nice if some of our later results (in particular the consequences
of witnessing with a probabilistic algorithm) for surjective WPHP (PV) could
be carried over to surjective WPHP(X%). The next lemma shows that, in
terms of their X% consequences, the two theories are not as dissimilar in
strength as they might be. To use surjective WPHP (%) in this way we need
to amend our definition of WPHP slightly to say that: no X¢ definable rela-
tion is the graph of a surjective function from a onto a?. We cannot just use
the version for functions because we cannot guarantee that, in an arbitrary
model, our ¢ formula will define a function (if it did always define a func-
tion there would be a PV function symbol for it anyway, by the witnessing
theorem).

Lemma 3.10 Suppose x(b,u,v) is a X8 formula, which we will treat as a

two-place formula x, with a parameter. Suppose

Sy = Va,b[PHP% (xp) — Jy0(a,b,y)]

a

where PHP is of the form: xy s not the graph of a surjective function a—» a®.

Then Ya,b3y O(a, b, y) is provable in S + Va PHP% (PV).
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Proof Re-writing our assumption slightly, we have
Sy F Va,b[-PHP%(x3) V Iy 0(a,b,y)].

a

Now —PHP,(xs) is the conjunction

Yo <a®Ju<axy(u,v) AVu<aIv<a® x,(u,v)
AV <vg <a®Vu<a=(xp(u, v1) A Xp(u, vs))

so in particular, using only the middle conjunct,
Sy = Va,bVu<a3v<a® xy(u,v) vV Iy(a,b,y)]
and by the witnessing theorem 2.17 there is a PV function f such that
Sy = VYa,bNu<a (f(a,b,u) < a® A xy(u, f(a,b,u))) VvV Iyb(a,b,y).
Suppose the conclusion of the lemma fails, and there is a model M with
M E S; + VYo PHP%(PV) + Yy —0(a, b, y)

for some a,b € M. Since M # Jy0(a,b,y), three things must hold, corre-
sponding to the three conjuncts in WPHP:

1. M EVYv<a®Iu<axy(u,v);
2. M EYu<a(f(a,b,u) <a®*Axp(u, fa,b,u)));
3. M E Vv <wvg<a*Vu<a—=(xp(u,v1) A xo(u, ve)).

By PHP% (f) in M, there exists v; € M, v; < a® with Vu<a f(a,b,u) # v;.
By (1) for some u < a we have xy(u,v1). Now let vy = f(a,b,u). By (2)

vy < a? and xp(u,vs), and of course vy # vy. But this contradicts (3). O

The above results all relativize with no significant changes to the proofs.

3.3 The complexity of witnessing WPHP

We prove a relativized version of the following theorem, since we will make

heavy use of it in chapter 5.
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Theorem 3.11 (Wilkie [13]) If Si(a)+Va PHPS (PV(«a)) F Vo Iy 0(z,y),
for 0 a X% (a) formula, then there is a probabilistic polynomial time oracle
Turing machine which, for any input x and any oracle A, outputs with prob-
ability at least 2/3 some y such that (N, A) F 0(x,y).

Proof Let u(e,w,t) be the universal function symbol, calculating the out-
put of the program with code e (and access to the oracle «) run for time |¢|

on input w. Suppose
Sy () + Ya VeVt PHP% (u(e, w, t)) - Vo Iy O(x, y),

where w is a placeholder. Moving WPHP to the right hand side and using

Parikh’s theorem (see for example [13]) we have that for some k € N,
SHa) bV, (Fa,e,t<2"" Vo <a? Iw<au(e,w,t) =v)V Iy b(z,y).

We use the relativized version of lemma 3.8 to obtain G' € Lpy(«) such that
if the universal function symbol defines a surjection a— a? for some a < 9ll*
using parameters e,t < 2/ then G defines a surjection (211")* — (2/#")8

using no parameters. So
Sy(a) -V, Vo< 281" 3y < 21l G(w) =v]V Iyb(z,vy).

Hence by the relativized witnessing theorem there are PV(«) functions gy

and ¢; such that for any oracle A,
(N, A) £ Vz Vo <28 go(z,0) < 29 A (G(go(z, v)) = vV O(z, g1 (z,v))).

So given z, if we choose v at random in [0, 28"”‘k), with high probability we
will have 6(x, g;(x,v)) since in the standard model very few of the elements
of [0, 281"} will be in the range of G on the domain [0, 247). O

A predicate B is in the class ZPP if there is a polynomial time proba-
bilistic machine which gives the right answer to the question “is z in B?”
with high probability and gives no answer otherwise (it never gives the wrong
answer). For an oracle set A the class ZPP is defined similarly except that

the machine is given access to an oracle for A.
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Corollary 3.12 Suppose that ¢(x) and (x) are X8(a) formulas such that
Sy(a) + Ya PHPY (PV(a)) F Va (¢(z) + —p(z)).

Then for any oracle A the set X defined in (N, A) by ¢ is in ZPP*. In
particular, if St +Va PHP%(PV) Ab-defines a predicate X then X € ZPP.

Proof We have that
Sy (@) + Ya PHP (PV(a)) - Va (¢(x) V (7))

so by the theorem there is a probabilistic polynomial time oracle machine
that, on input z, outputs with high probability a w witnessing either ¢
or ¢. Consider the probabilistic polynomial time oracle machine that first
computes w and then outputs “yes” if w witnesses ¢(z) (this can be checked
in polynomial time); “no” if w witnesses ¥ (x) (again in polynomial time);
and “don’t know” otherwise. This machine will return the right answer to

“r € X777 with high probability and will never return a wrong answer. [l
However the converse does not hold, at least in the relativized case.

Theorem 3.13 There is an oracle set A and a set X € ZPP? such that X
is not Ab(a) definable in Si(a) +Va PHPS (PV(«)), where we interpret o by
A.

Proof In [2] an oracle is constructed with respect to which ZPP does not
have a complete language. Let A be such an oracle. Then if the theorem were
false, together with corollary 3.12 this would mean that the sets in ZPP* are
precisely the sets A’(a) definable in Si(a) +Va PHP% (PV(«)). This gives a
contradiction because by theorem 2.23, since ZPP* is a leaf-language class
(see [2]) it must have a complete language. (To use 2.23 we also need the
fact that the proof of theorem 3.11 tells us how to construct the probabilistic
machine required.)

We could also use theorem 2.21. Suppose the theorem is false. Then for

any probabilistic polynomial time function f (with oracle A) the set

{(z,4) : bit(f(x),7) =1}
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is A’(a) definable in Si(«a) + Ya PHP% (PV(a)), since it is in ZPP#. Using
the comprehension available in S} (a) we can reassemble the function f from
its bits, so that f is X%(a) definable in our theory.

Together with theorem 3.11 this means that the probabilistic polynomial
time functions (with oracle A) are precisely the functions Y%(«) definable in
the theory; hence by theorem 2.21 there is a complete function ¢ for this
class. Then {z € N: g(z) = 1} is a complete language for ZPP*. O

Definition 3.14 (Rivest, Shamir, Adleman [25]) An instance of RSA
consists of a modulus n which is the product of two large primes p and q,
exponents e and d which are mutually inverse modulo (p—1)(¢—1), a message
m < n and a cyphertert ¢ < n such that ¢ = m® mod n and m = ¢ mod n.
We say that we can crack RSA if, given n, e and ¢, we can efficiently find

m.

Lemma 3.15 (Krajicek and Pudldk [15]) Suppose there is an efficient
algorithm witnessing injective WPHP for PV function symbols with param-
eters, that is, given any polynomial time function f there is an algorithm
which, on input c,a such that Vo < a? (f(c,x) < a), outputs v, < 1y < a?
such that f(c,x1) = f(c,x9). Then we can crack RSA.

Proof (This is a more direct version of the proof in [15].) We are given ¢, n
and e. Without loss of generality (¢,n) = 1 or we could factorize n, recover p
and ¢ and hence find (p—1)(¢ —1), d and m. Hence ¢ has an inverse modulo
n.

Let s be the order of ¢ mod n, which will be the same as the order of
m mod n. Now e and s must be coprime. Otherwise let (e,s) =¢ > 1 and
u = s/t. Then u < s and s|eu, so ¢* = m* = 1, contradicting the leastness
of s.

Use the algorithm on the function z — ¢® mod n to find z; < 25 < n?
with ¢™ = ¢ mod n. Let 1o = x5 — 21 # 0. Then ¢ =1 so s|r.

Remove all factors of e from ry by calculating

T'o T

ry = (6,7“0)7 Tro = (6,7"1),

to get r with (e,r) = 1. This takes at most logry divisions.
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Since (e,s) =1 and s|ry we must have s|r;. Similarly s|ry etc. So s|r.
Calculate d’ such that d'e = 1 4 tr some ¢; finally calculate ¢* mod n.

Then, since s|r so m" =1,

d med’ mitir =

c (m")'m = m. O

Corollary 3.16

1. If S} proves injective WPHP for PV functions with parameters, then

RSA is vulnerable to deterministic polynomial time attack.

2. If Si together with the surjective WPHP for PV functions proves the
injective WPHP for PV functions with parameters, then RSA is vul-

nerable to probabilistic polynomial time attack.
Proof Injective WPHP for PV functions with parameters is the VX4 scheme
VeVa 3wy <my<a® f(e,71) = fle,x2) V Iz <a® f(c,x) > d

for PV function symbols f.

If it is provable in Si then by theorem 2.17 there is a deterministic poly-
nomial time algorithm satisfying the assumptions of lemma 3.15.

If it is provable in S} + Va PHP%(PV) then by theorem 3.11 there is a
probabilistic polynomial time algorithm satisfying the assumptions of lemma
3.15. OJ
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4 Models of PV

We return to the principle BB(PV) (see definition 2.12). In the first section
of this chapter we show that if PV + BB(PV) is as strong as Sj then the
S: hierarchy collapses. In the second section we show that if the surjective
WPHP holds in a suitable model of PV, then initial segments of that model
have more than one end-extension to models of PV (lemma 4.4). On the
other hand we show that if PV proves BB(PV) then such end-extensions
are unique in models of PV in which the injective WPHP fails (the proof of
theorem 4.5). Together with the results of chapter 3 this means that if RSA
is secure then PV + BB(PV) lies strictly between PV and S in strength.

4.1 More about sharply bounded collection

Recall that sharply bounded collection for PV formulas, or BB(PV), was

defined in section 2.1 as the axiom scheme
VaVy , Vi<|z|3z<y ¢(i, 2) — JwVi<|z| (i, w;)

for all PV formulas ¢ with parameters.
We give some evidence in this section that the theory PV + BB(PV) is
strictly weaker than Si. The following is adapted from Zambella and uses a

similar construction to our proof of the witnessing theorem 2.17.

Lemma 4.1 (Zambella [30]) Any model N & PV has a 3’PV-elementary
extension to a structure M E PV + BB(PV) such that M is the closure in
M under all PV function symbols of the union of N with a subset K C M,
where K has the property that for every x € K there is y € N such that
z < lyl.

Proof Expand the language to include a name for every element of N and
let T~ be the universal theory of N in this language, so that any model of
T~ is automatically an J-elementary, and hence 3°PV-elementary, extension
of M. Add a new set of constant symbols {c, : « € N} to the language and
let Ty be the union of T~ with the sentences {¢, < |a| : @ € N} (this is the

only relationship between ¢, and a; this notation is brought in so that we can
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guarantee that K < log N). Enumerate as (¢1(z,y),t1), (¢2(z,y), t2), ... all
the pairs consisting of a PV formula in two free variables and a closed term
in our expanded language.

We will construct a chain Ty, C T; C T; C ... of consistent universal the-
ories. Suppose T; has been constructed. Either T; - Vo < |t;11| Jy i1 (x,y),
or not. In the first case, put 7;,; = 7;. In the second case, choose d € N
such that the constant ¢4 has not been used so far (outside the definition of
Ty) and put

Tiy1 =Ti U (cq < [tig1]) AVY—disa(ca, y).

To make sure that this is consistent we need to choose d large enough that
cq < |d| is consistent with what we are adding (this is required by the defi-
nition of Tp) but we can do this because, since ¢;,; is a term built up from
elements of N and constants that have to be smaller than the length of some
element of N, we can always find a d such that t;,; < d is consistent.

Let T = |J,T;. T is a consistent theory so has a model M'. T is a
universal theory, so if we let M be the substructure of M’ given by all the
closed terms in the expanded language, M E T

To show that M is a model of sharply bounded collection, let ¢;(x,y)
and t; be any PV formula and any term. Suppose M F Vx <|t;| Iy ¢i(x,y).
Then we must have T;,_; F Vo < |t;] Jy ¢;(x,y), since otherwise a constant
symbol ¢ would have been introduced at stage ¢ in the construction so that
M E (¢ < |ti]) ANVy—¢i(c,y). T is a universal theory so by Herbrand’s

theorem there is a finite set fq,..., f, of terms such that

T =Vo<|t] \/ ¢iz, fr(z)).

k=1

As in the proof of theorem 2.10 we can combine these into one PV function
F such that Vo < [t;]| ¢;(x, F(x)). Furthermore by the coding available in
PV we can find w € M such that Vo < |t;|w, = F(z). Hence M F Vz <

Theorem 4.2 (Zambella [30]) If PV + BB(PV) + S5, then PV F Sj.
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Proof Let N F PV. Extend N to the model M of sharply bounded col-
lection given by lemma 4.1. Suppose that M E Si. We will show that the

comprehension scheme
Ve <la| (Fy<bo(x,y) <> bit(z,z) = 1)

holds in N for every PV formula ¢. It follows that LIND holds in N for the
formula Jy <b ¢(x,y).

Let ¢ be a PV formula with parameters in N. Then for some w in M,
since M F S3,

M EVz<|al,w, <bA Fy<bo(x,y) < ¢(z,w,))

(this is sometimes called strong replacement, and was proved for ¢ formulas
in Sy by Buss [4]). By the construction of M, there exist a PV function
symbol f with parameters from N and an element ¢ of M with ¢ < |e| for
some e € N, such that w = f(c); without loss of generality we may assume
f(u)y < bfor all u,x € M. By the properties of PV, we can find v € N with

N EVx<|a|,bit(v,z) =1 < Ji<|e| p(z, f(i)z)-

This v is precisely the element needed for our comprehension axiom for ¢.
For if x < |a|, x € N and bit(v,z) = 1 then N F 3i < |e| ¢(x, f(i),) so
N EJy<bo(x,y). Conversely if bit(v, ) # 1 then N F Vi<|e| ~o(z, f(i),)
and the same is true in M by F°PV-elementariness, so in particular M F
—¢(x, f(c),), that is, M F —¢(x,w,). Hence M E Yy <b—¢(z,y) and again
by elementariness the same is true in V. 0]

Theorem 4.3 (Zambella [30], Buss [5]) If PV F S) then PV~ S,.

Hence if PV 4+ BB(PV) proves S; the bounded arithmetic hierarchy col-

lapses.

4.2 WPHP in models of PV

We first show that if a model M of PV satisfies surjective WPHP for PV

function symbols then any initial segment of M that is not too large has
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two different end-extensions to models of PV. Recall that u(e,z,c) is the
universal PV function symbol, which calculates the output of the Turing
machine with code e run on input = for time |¢|. We will use the notation
#a as shorthand for the cut 2/o".

Lemma 4.4 Let M F PV. Suppose that ¢, a are nonstandard elements of M,
that € < |al, that #a is not cofinal in M and that M & Yec PHP%. (u(z,0, c))
(where x is a placeholder). Then there is N E PV such that

(M la) Cc N C (M [#a)

and in particular for some v < a* in M, v ¢ N. Furthermore N and M |#a

are not isomorphic.

Proof Let N be the closure of [0,a) in M under all PV function symbols,
so N F PV, since PV is universally axiomatized. We that claim N is as
required. Let ¢ > #a. By WPHP, for some v < a? in M,

M EVy<a®u(y,0,c) #v.
Consider the type
[(z) = {Vby,...,b, C[0,a) f(b) # 2z : f € Lpy,n € N}.

No element of NV realizes this type, but v does realize it. Otherwise, we would
have a function f running in time |a|¥, for some k € N, such that v = f(b)
for some b C [0,a). Then there is clearly some input y < a° to the universal
machine that we can construct from (f, k,by,...,b,), with f € N, such that
the universal machine run on y simulates f with input b and halts in time

lalF. Hence v = u(y, 0, ¢), contradicting the choice of v. O

Theorem 4.5 Assume that PV proves BB(PV). Then PV also proves that
surjective WPHP (PV) implies injective WPHP (PV) with parameters.

Proof Let M E PV satisfy surjective WPHP(PV), but be such that for
some a,c¢ € M and some PV function symbol f, f(c, x) is an injection in M

from a? into a. Choose b > a,c so that b = 2% for some 5. Amplify f to
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an injection ¢ : 28° < b with parameters in [0,2°°). Taking an elementary
extension if necessary, assume that #b is not cofinal in M.

Take £ small and nonstandard. By lemma 4.4 we can find N F PV, a
submodel of M with [0,2°°) C. N but v ¢ N for some v in [0, 26°¢).

Define a PV function symbol H (with parameters in [0,2%")) mapping
x < 277 to the unique y < b° such that

Vi<i<ey; = g([z];)

where y; is the numeral in [0,b) consisting of the /3 bits occurring in places
((i —1)B +1),...,i3 of y, and [z]; the numeral in [0,2°") consisting of the
/3% bits occurring in places ((i —1)3%+1),...,13? of z. This is an alternative
way of amplifying ¢, and as before by the V3PV conservativity of Si over
PV, H is an injection 2°°¢ <5 b° in both M and N. H can be thought of as
mapping e-length sequences from |0, Qﬁz), coded in |0, Qﬂ%), injectively into
e-length sequences from [0,b), coded in [0,6°); so H maps sequences coded
in M that may not be in N to sequences coded in N.

Let u = H(v). In M, we can expand u back to an e-length sequence from
[0,27%). Formally, M £ V1 <i<e3lw < 2% g(w) = uy, since we may take
w = [v]; and g is injective. But this formula is also true in N, since u € N,
M [252 and N [2/32 are the same and the formula only refers to the properties
of this initial segment. However v ¢ N and H is an injection in N, so in N

we have
Vi<i<eIw<2¥ g(w) =u; A Vo<2%° H(z) #u
and this contradicts sharply bounded collection. O

Notice that this in fact contradicts a weaker version of collection than
BB(PV), since ¢ could be much smaller than .

Corollary 4.6 If RSA is secure against deterministic polynomial time at-
tack, then PV + BB(PV) I/ Si. If RSA is secure against randomized polyno-
mial time attack, then PV I/ BB(PV).

Proof The second part is by theorem 4.5. For the first part, by theorems
4.2 and 4.3 if PV  BB(PV) then PV  S,. Hence the injective WPHP
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is provable in PV, since it is provable in S,. Hence it can be witnessed in

polynomial time. O
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5 Witnessing and independence

We prove some independence results for relativized theories. They are of the
form: theory T cannot prove that a certain property holds of a structure
defined by our new symbols on an interval [0,a). We prove them by relat-
ing them to a problem in complexity theory: what can a Turing machine
discover about a finite structure that is given by oracles? In the first sec-
tion we give an old general criterion for unprovability from the relativized
version of S (theorem 5.3) in the second section we show that the injective
WPHP for a new function symbol is not provable from the relativized ver-
sion of S3 +Va PHP%,(PV) (corollary 5.6) and look for a general criterion for
unprovability from this theory.

Related problems have been studied in cryptography, where these struc-
tures are known as “black box” structures. The proof of theorem 5.9 is based

partly on an idea from Shoup [27].

5.1 Unprovability in S3(a)

Definition 5.1 We say that a Turing machine M 1is given a structure K =
([0,a), @) as input if it starts with the number a written on its input tape and
is given access to an oracle for the relations and functions in «, where we

consider constants to be 0-place functions.

Lemma 5.2 (Riis [26]) Let ¢(Z,y) be an open formula in a relational lan-
guage o disjoint from our language of arithmetic. Let ® be the sentence
Vz 3y ¢(Z, 7). Suppose ® has an infinite model. Then there is no oracle ma-
chine M € PNP which, when given any structure ([0, a), ) as input, outputs
a tuple T < a such that ([0,a), o) EVy—¢(Z, 7).

Hence by the full, relativized version of the witnessing theorem 2.17 if ®
has an infinite model then S3(a) ¥ Ya ({[0,a), a) E =®).

Proof We follow the presentation in [13]. For the sake of simplicity we will
only consider the case in which our new language is a single binary relation
symbol a.

Let (K, A) be an infinite structure satisfying ¥z 37 ¢(Z, ), where we in-

terpret « by the binary relation A. Suppose for a contradiction that there
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is a deterministic oracle machine M and a non-deterministic oracle machine
N such that MY, given any structure ([0,a), «) as input, outputs a witness
to ([0,a),a) F =®. Let the running times of M and N be bounded by
polynomials p and ¢ respectively.

Fix a € N sufficiently large and let S be the set of partial functions
[0,a) — K. We will construct o € S as follows: we begin with o empty, and
start a computation of M on a; we will add a small number of pairs to o at
each step in the computation.

We may assume that at each step an oracle query [b7] is made to .
Consider all possible extensions 7 € S of ¢ and all possible computation paths
w of the non-deterministic machine N on b. If, for some such 7 and some
such w, 7 is defined on all elements 2, 2o € [0,a) for which the computation
w queries [a(z1, 22)?] and if w is an accepting path if we reply to such queries
with A7(z1, 22) =gef A(7(21),7(22)), then return “yes” and add (z1,7(21))
and (z9,7(22)) to o for all pairs 2,z queried in w. This adds at most
|lw| < q(p(]a|)) elements to o. If there is no such extension 7 and path w,
return “no” and leave o unchanged.

By step ¢ of the computation, we will have a partial function ¢ such that
lo| <i-q(p(la])) and for any 7 € S with o C 7, on input a the two machines
MY with oracle A° and M”™ with oracle A7 will be in the same configuration
after 7 steps.

Let ¢’ be the end result of this construction, when the computation of M
has finished. Then |0'| < a and for any partial function 7 extending o', on

input a the machine MY with oracle A™ outputs a witness b such that

vy <a=({[0,a), A7) F 6(b, 7)).

But this is a contradiction since by the assumption that (K, «) F VZ 37 ¢(x, y)
there is some tuple ¢ € K for which (K, A) E ¢(o'(b),¢) (without loss of
generality b is in the domain of ¢’) and we may extend o’ to 7 € S with
¢ = 7(d) for some d C [0,a); so

d<an({0,a), A7) E ¢(b,d)). O

Theorem 5.3 (Riis [26]) Let ® be any sentence containing only symbols

from a language o disjoint from the language of arithmetic. If ® has an
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infinite model then
S3(a) i Ya ({0, a), a) F =®).

Proof We can convert ® into a form ¥ to which lemma 5.2 applies by first
Skolemizing and then replacing each function symbol f with a relation symbol
Ry, each time conjoining V3 formulas stating that R; defines a function. The
lemma shows that there is a model of S2 + ({[0,a),a) F ¥) with induction
for all these relation symbols. We can now re-introduce symbols for the
functions, since we have ensured that the relevant relations define functions
in this model. O

5.2 Unprovability in Si(a) + Va PHP%(PV(«))

We study the limits of what we can prove in Sj(a)+Va PHP% (PV(«)) about
the structures ([0, a), @) defined by the language « on initial segments of mod-
els. The ultimate goal is to find an analogue of Riis’ sufficient condition for
unprovability in S%(«) (theorem 5.3). The best candidate for a condition is,
roughly, that ® has arbitrarily large models in which the number of witnesses
to @ is small. However we run into problems in proving this, because in this
setting we do not have the machinery Riis uses to get rid of function symbols.

We obtain our results by showing that it is hard for a probabilistic poly-
nomial time oracle machine to find certain elements of a structure it is given

as input, then applying theorem 3.11. We need an inequality:
Lemma 5.4 Ifa,t € N and 4t> < a then (1 —t/a)t > 3/4.

Proof Using the binomial expansion,
t 2 3
P L A W (et I A S G V[ N
a a 2 a 3-2 a

Since t? < a, we have

)OO0 00
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So the absolute value of each term in our expansion is smaller than the last,
and we may remove (in pairs) all but the first two terms to give
t 2
t t 3
<1——> >1——>-. UJ
a a 4
Lemma 5.5 There is no probabilistic polynomial time oracle machine which,
given a structure ([0, a), f) as input where [ is a two-place function, outputs

with probability at least 2/3 distinct pairs (z1,x2), (Y1,y2) witnessing that f
satisfies injective WPHP, that is, such that f(xy1,x2) = f(y1,y2).

Proof Suppose that this is false and that such a machine M exists, running
with time exponent k¥ € N. Choose a € N so that a is bigger than 4|a|?*, and
let t = |a]*.

For ¢ € {0,1}" let M, be the deterministic machine obtained by replacing
the random choices in M with the fixed sequence ¢ of coin tosses. There are

2
aa

many possible functions f on our domain. By our assumption, for each
such function, for 2/3 of the possible coin tosses, the machine M, will find
elements witnessing WPHP. Hence there must be some sequence ¢ of coin
tosses such that M, will find witnesses for 2/3 of the possible functions.

Fix such a ¢ and start a computation of M.. We will construct an oracle
function f step by step. We assume that at each step in the computation
one oracle query [f(x1,x2) =7] is made, with z;, 29 < a. We construct f by
replying to each such query with a random number in [0, @), if the pair z;, 2
has not been asked before, or by giving the same reply as before, if it has.
At the end of the computation we will have fixed the value of f at at most
t places; we choose the remaining values at random in [0, a). There were a®’
possible sequences of random choices we could have made, and each one leads
to a different f. Hence choosing f in this way gives the same distribution as
choosing it uniformly at random.

The probability that the computation successfully found x1, zo, y1, yo with
f(z1,22) = f(y1,y2) is at most the probability that, if ¢ elements of [0, a) are
chosen at random, two of them are the same. The probability that ¢ such
elements are all different is

1 a-2 —(t—1 t\" 3
]_.a -Cl M><l__)>_
a a a 4
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using lemma 5.4.

Hence we have shown that if we choose f uniformly at random the ma-
chine M, will only find witnesses with probability < 1/4. This contradicts
the choice of c. O

Corollary 5.6 The injective WPHP for a function given by an oracle f is
not provable in Sy(f) + Va PHPL(PV(f)).

Corollary 5.7 For any X4(f) formula x.(z,y) containing only a,z,y as free
variables,

S3(f)  Ya, PHPg (xa(x,y)) — PHPY (f).
Proof Apply the relativized version of lemma 3.10. 0]

The key idea in the proof of lemma 5.5 is that we can find a class of
structures, a large number of which will fool a given deterministic polyno-
mial time machine. It follows that there is no probabilistic polynomial time
machine which works on every structure in the class. This is easy in lemma
5.5, because the only condition on our structures is that they be binary
functions.

In general this will not be quite so easy, since we will want to find a large
class of structures that all satisfy a particular theory. We do this by taking
one structure that satisfies the theory and permuting it.

Definition 5.8 Suppose that a € N has been fized. Let K = ([0,a), <, P,0)
be the structure on the set {0,...,a — 1} with the usual ordering relation,
a one place “modulo predecessor” function P taking v + 1 to x and and 0
to a — 1, and a constant symbol O for the least element. Let S be the set
of all permutations of [0,a). For o € S, let K7 = ([0,a),<?,P?,0°) be K
permuted by o. That is, x <7 y if and only if o(x) < o(y), P’(x) =y if and
only if P(o(x)) = o(y) and 07 = o 1(0).

For i € N we define N7, the i-neighbourhood of 0°, to be the set of
elements x of [0,a) from which we can reach 07 with i or fewer applications
of the function P?. (So x € NY if and only if o(zx) € [0,14].)
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Theorem 5.9 There is no probabilistic polynomial time oracle machine
which, for all a € N and all permutations o of [0,a), given input a and
equipped with oracles for <% and P?, with probability at least 2/3 outputs the
least element 07 of the structure ([0, a), <%, P?,07).

Proof Suppose there is such a machine M with time bound |z|¥. Choose
a € N bigger than 4|a|?* and let ¢ = |a|¥. For a sequence ¢ € {0, 1}, we will
write M, for the deterministic machine (essentially a branching program)
which simulates M running with coin tosses ¢. The only part of M, we
consider is a combined oracle query and oracle reply tape, which at step ¢ of
the computation will contain an element w; of [0,a). We allow M, to do one

of three things at each step 7 + 1:
1. Write down some number w;,; on the tape;
2. Query [w; 1 <? w;?] and expect w;;; to be 0 or 1 accordingly;
3. Query [P7(w;) =7] and expect w;y1 to be the correct answer.

Let C be the set {0,1}" of possible coin tosses and S the set of permu-
tations of [0,a). We are interested in the number of pairs (o,¢) € S x C for
which the machine M.(<?, P?) succeeds, that is, outputs w; = 07 on input
a. Call a pair bad if at some step i in the computation of M.(<?, P7) at
least one of the elements wy, ..., w; is in N7, the (¢ — i)-neighbourhood of
07. All other pairs are good.

Clearly the set of bad pairs contains all the pairs for which M.(<7, P7)
succeeds. By assumption, for each o the machine M.(<?, P?) is successful
for 2/3 of all coin tosses. Hence there are at least a! - % - 2! bad pairs.

We will obtain a contradiction by showing that for each ¢ € C, if we
choose a permutation o at random then (o, ¢) is good with high probability.

Fix ¢ and choose o step-by-step as follows. Set oy = &, and begin a
computation of M.. Suppose that after step 7 in the computation o; is a
partial permutation of [0,a), defined on wy,...,w; (this list may contain
repetitions) and nowhere else. To avoid a technical problem, we assume that
the program always puts w; = 0 and w, = 1. The definition of ¢;,; depends

on the next action M, takes.
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1. If M. writes down an element w;,;, do nothing if w;,; has already
occurred on the list. If w;;; is new, choose y at random in [0, a)\ran(o;)

and let 0,11 = 0; U {{wi1,9)}.

2. If [w;_1 <% w;?] is queried set w; 41 to be 0 or 1, depending on whether

oi(w;_1) < o;(w;) or not. Let 0,11 = 0.

3. If [P7(w;) =7] is queried, let y = P(o;(w;)). If y = o;(x) for some
x, set w;y1 = x and let 0,1 = 0;. Otherwise choose x at random in

[0,a) \ dom(o;), set w;y; = x and let 0,41 = 0; U {{(x,y)}.

After t steps the computation will have finished; extend o; randomly to a
total permutation o.

For each ¢, o chosen this way will be distributed uniformly in S, since
there are a! different sequences of random choices we could have used and
each one leads to a different 0. We claim that if o is so chosen then at the ¢th
step in a computation the probability that the computation has been “good
so far” is at least (1 —t/a)’. That is,

N
Prob|Vj<i, w; ¢ N/,| > <1 — —) .

a

This holds for i = 1, since o1(wy) is chosen at random from [0,a) and w; €
Ny, if and only if o1 (w;) € [0,t]. Now suppose this holds for i, and consider
the different things that can happen at the 7 4 1st step. Neither case 2 nor
case 3 above can make a computation that has been good so far turn bad.
In particular, if [P7(w;) =7] is queried and w; ¢ N/, then w;, = P (w;) ¢
N7, by definition. If case 1 occurs, then the computation only turns bad if
a new w4 is written down and o(wj;41), chosen at random, isin [0, —i —1].
The probability that this does not happen is at least (1 — ¢/a).

Hence once we have finished the computation and defined o, the proba-
bility that the pair (o,c¢) is good is at least (1 — ¢/a).

We have shown that for each ¢, at least a! - (1 — ¢/a)’ > 3a! permuta-
tions o yield good pairs. Hence there are at most a! - i . 2! bad pairs, a

contradiction. O

Corollary 5.10 The theory S3(<')+Vz PHPZ,(PV (<)) does not prove that
every total order <" has a least element on every interval [0, a).
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Proof Suppose
Va, (<'is a total order on [0,a)) = Jr<aVy<a(x £y — x <'y)

is provable in the theory. If we introduce a Herbrand function p to replace
the universal quantifier Yy, we have that

Va, (<'is a total order on [0, a))

— dr<a(p(z) <anz#plx)—x< plx))

is provable in the theory. This is a ¥3(<’, p) formula, so by theorem 3.11 there
is a probabilistic polynomial time machine M which will, when equipped with
oracles for <" and p and given an input a, find witnesses with high probability.

However by theorem 5.9 we can find a number ¢ € N and a structure
([0,a),<?, P?,07) in which the element 07 is the only witness to the formula
above and the structure is such that M does not output 07 if only given
access to <? and P°. U

The same proof will work for any language containing only constants,
relations and one unary function symbol. It ought to be possible to generalize
the result and get something like the following:

Definition 5.11 Suppose a € N, and K = ([0,a),7, f,¢) is a structure with
a finite number of relations, functions and constants 7, f,¢. Let S be the set
of all permutations of [0,a). For o € S we define K7, the permutation of
K by o, to be the structure {[0,a),7°, f°,¢). Here, for each relation r; and
tuple T C [0,a), r7(Z) if and only if ri(o(Z)). Similarly f7(Z) = y if and
only if fi(o(7)) = o(y), and & = o~ (cz),

If T,y are tuples in [0,a), and t € N, we say that § is derivable from T by
a circuit in K of size t if there is a sequence wy,. .., w; of elements of [0, a)
which contains every element in the tuple i and is such that every element
of w is either an element of the tuple T, or the interpretation of a constant

in K, or follows from earlier elements in the sequence w by a function in K.

Open Problem 5.12 Suppose a €N, and K = ([0,a),7, f,¢) is a structure
as above. Let W be any set of tuples from [0,a), and for o € S let W7 =
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{z C[0,a): o(x) € W}. Suppose for some t € N and some probability q
there is a probabilistic machine M which for any o € S, when run on input
K7 for time t, outputs a member of W7 with probability at least q. Show that
for at least qa' of the t-tuples T in [0,a), some member of W is derivable

from x by a circuit in K of size t.
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6 Constructing unique end-extensions

We show that if any version of WPHP fails between a and a? in a model K
of S} of the form [0, al®!) then for any & € N there is an end-extension .J of
K to a model of S! of the form [0, al”") definable inside K (theorem 6.6).
Furthermore .J is the unique such end-extension, up to isomorphism over K.
A consequence is that in a model of S in which WPHP fails, increasing the
interval our quantifiers range over (up to a certain point) does not increase
the complexity of the X} sets we can define (corollary 6.8). (In fact our

results are slightly more general than this.)

6.1 Categoricity, definability and coding

Definition 6.1 (Gaifman; see [22], [23], [9]) A structure M is relatively
categorical over a definable subset P with respect to a theory T iof M ET and
for every N E T, if there is an isomorphism between M [ P and N [ P then

this can be extended to an isomorphism between M and N.

We set out what it means for a structure to be defined inside a model
of bounded arithmetic. Recall that R is a theory of arithmetic with a top

without induction; see definition 2.25.

Definition 6.2 If S and X C S are sets in a model K E R, then X is said
to be A? in S if both X and S\ X are definable by 2’7’. formulas.

Definition 6.3 Let K F R. We say that a structure J (in our language) is
i? defined in K if there exist a i? subset S of K and relations =5, <j, -,
+; and | |; that are A% in S such that J consists of the domain S/, with

the relations induced by <y, -5, +; and | |;. For a € K, we say that J is
defined below a if S C [0, a).

Definition 6.4 If K is a model of R and J 1is 2’7’. defined in K, a E_];’- function

from K to J is a function of the form

z—{yeS:o(xy)}

for a 21} formula ¢, which maps elements of K to =;-equivalence classes.
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We show that if a model of Sg violates WPHP in the right way, then
we can code very long sequences inside the model. We will go on in the
next section to make these sequences into our end-extension by defining the

operations of arithmetic on them.

Lemma 6.5 Suppose K E Sg is of the form [0, a%), where a = 2% some a and
K does not satisfy mPHPf(E?). Then for any | € N there is a E? subset S
of [0,a) such that we can define a i? coding relation (x), =y, which defines
a function from S x &' to [0,a), but is not defined for x outside S. This can
be used to code any 22’. definable €'-length sequence of elements of [0,a) as an

element of S (possibly two elements of S will code the same sequence).

Proof We will call elements of [0,a) “numerals”, and use the coding func-
tion xz; to treat any element of K as a sequence of £ numerals. Let r(z)
and f(z,y) be the ié’- formulas violating mPHP. We first use lemma 3.6 to
amplify f to a ¥? definable surjection g from s([0,a)) onto [0, a), where s
is also a X% formula. Furthermore, by the lemma if r([0,a)) = [0,a) then
5([0,a)) = [0,a) and if f is 1-1 then g is.

Thus we can encode an e-length sequence of numerals as a single element
of s([0,a)). To encode £'-length sequences, we use a complete e-ary tree of
(standard) height I. We label the leaves of the tree with the sequence f; ... S
which we want to encode, and then label the other nodes so that if a node
is labelled w, then w € s and its children are labelled g(w);...g(w).. We
define (), = y to hold if, in the tree with = at the root, the leaf at the end
of the path naturally given by i < &' (considered as an [-tuple in € x ... X &)
is labelled y. Let S(z) be the formula z < a AV1<i<e Jy<a(z), =y.

To show formally that this is a coding relation with the required property,
let ¢(i, y) be a X% formula, possibly with parameters, such that V1 <i<e! Iy <
a ¢(i,y). We claim that we can find x € S encoding a sequence satisfying ¢,
ie. V1<i<e @(i,(x);,). This is done by considering, in turn, each level of
the tree described in the previous paragraph and showing that each node on
that level has a suitable label.

First look at the level immediately below the leaves. Let ¢'(i,y) be the

formula stating that y is a suitable label for the ¢th node on this level:
s() AVISE<ep((i —1) -2+ k,9(y)k)
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(where ¢ is our surjection s([0,a))—[0,a%)). Since we can encode, using first

comprehension and then g !

, any 2’7’. definable e-length sequence of numerals
as a single element of s, we can show that all these nodes can be labelled,
ie. VI <i<e™'3y<ad(i,y). The formula ¢'(i,y) is still Eg’-, SO we can
repeat this step [ — 1 times for all the lower levels in the tree to find y € S
(there may be more than one such y) encoding a suitable £!-length sequence

via (y),. O

6.2 The construction

Note that in the theorem below the restriction that a should be a power
of 2 can easily be dispensed with, since given K F S} of the form [0,b) we
can always construct a model of the form [0,?) from the cartesian product
K x K, and this model will certainly be determined up to isomorphism over
K. So we can find a suitable power of 2 when we need one.

We give this proof in a rather general form, but the most useful case is
j=1,k=0,¢c=]al

Theorem 6.6 Suppose 7,k,l € N, 7 > 1, k > 0,1 > 2. Let K be a
model of SgJ“k of the form [0,a%), where a = 2% for some «. Suppose
K F -mPHP? (£%). Then

1. K has an end estension to a model J of Si™ of the form [O,aal).
Furthermore this end extension is definable inside K below a in the
sense of definition 6.3.

2. If I is any end-extension of K to a model of Sg of the form [0, asl), then
I s relatively categorical over K with respect to the theory Sg + (asl -1

is the greatest element).

Proof We will first construct .J, and then show it is an end extension.
Each element of .J will be constructed in the natural way as a sequence of
numerals of length . We use the coding function (z), and the set S given
by lemma 6.5, and the fact that we can define addition and multiplication

numeral-wise.
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Define, for b,c in S,

b=5c & VI<Ki<e (b), = (¢);;
b<jc & INKi<e ((b), < (c);, AVi<t <Hb), = (c),);
() =c)y & (b=0Ac=0)VvIIKiLe,
0y, 0N c=a-(i—1)+ [(b),| AVi<t <'(b), = 0.

These are AIJ’- in S because we only apply (), to members of S, on which it
behaves like a function, so that we can negate the subformulas containing it
without having to increase the quantifier complexity. For example, to write

the definition of equality in J more fully, we have

b=yc & SO)AS()AVILi<e' Ty (b), =yA(c), =y
b#sc & SOYAS()AIINKi<e TyTe b), =yAlc), =2 ANy # 2.

To define addition, first note that in S} we can define ¥% modulo addition
and carry functions A(z,y,2) and C(z,y,z) in K such that if z,y,2 < q,
then A(z,y,2),C(x,y,z) <aand x+y+z=a-C(x,y,z) + A(z,y,z). We
add our e'-length sequences numeral by numeral, and use a variable w to

encode the sequence of numerals carried.
Define, for ¢,d,e € S,

(c+d=e); & 3w, Sw) A[{w), = C((c)y, (d),,0)
AV1<i <l w), = C(
)

Alfe), = Alle),, (d),,0) A
AVI<i <o), = AUy (d)y, (), )]

We can always find a w € S witnessing the first expression in square brackets,
so we can define the complement in S of this relation by putting a negation
in front of the second expression in square brackets. Hence it is A;’. in S.
Multiplication is defined in a similar way. We need to be able to encode
(26" +1) x (¢')? matrices of numerals, and by lemma 6.5 there is a 3% subset
T of [0,a) on which we can do this via a £ coding relation (z); = y, for
i=1,...,(e")? and k = 1,...,2¢' + 1. For any b,c € S, there are two such
matrices m, ( which encode the multiplication of b by ¢ as follows (of course
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there may be more than one member of T coding each of these matrices).
Each row of 7 contains the product of a numeral of b and a numeral of ¢,
suitably offset. In particular if (b),(c); = w + av, for some u,v < a, then
row (i — 1)e' + k of m has u in the (i + k)th place, v in the (i + k + 1)st
place, and zero everywhere else. Each row i of ( encodes the sum of rows
1 to i of m. Define, for d € S, (b-c = d); if for some 7 and { as above
Vi<k<e (d), = (c)fV and all the other entries in row (¢')? of ¢ are 0.
This completes the construction of the model J = S/:J. For z € S we will
write [z] for the equivalence class of x under =;. To establish the BASIC'
axioms, we first observe that by E_];’-—LIND in K, <; is a total ordering on

J. Then consider the formula

d(7,y) & S(y) AVIKi<e (y);, = 2 AVe<i <&l {y), =0
and the map

o:x—{yeS:KE¢(xvy)}

This is a map K — J and the relations on S have been defined so that it is
an isomorphism onto an initial segment of .J. Hence .J is an end-extension of
K.

Standard methods now show that J F BASIC'.

Let v = a - ¢ and [y'] = o(7), so that the sharply bounded quantifiers
are precisely those that are bounded by some standard power of v (in K) or
some standard power of [y'] (in J).

We claim that, for n > 0, for every ¥%_, (or 12 ,) formula 6(z), there is

a X! (respectively II? , ;) formula 6,(z) such that for all b € S,

JEO(b]) & K E0;(b). (i)

and if @ is sharply bounded then we can find both a ig formula 0% and a f[?
formula 0 satisfying (i).

We prove the sharply bounded case first, by induction on the number
of quantifiers in #. We know how to translate quantifier free formulas into
formulas that are A;’. in S, and this is precisely the property that we require.

Now suppose 6 is of the form Yy < [y']™ x(Z,y) for some m € N, where x is
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sharply bounded. Then for any b € S, by the definition of the isomorphism

0-7
JEOD]) & ViecK,i<y™, JEx([],o(i))
& Vi €K, i<y™ Ve eo(i), KFExT(b,c)
& KEVi<y™Vr (S(z) A¢(i,z) — x5 (b, 2))

where X7 is given by the induction hypothesis and is 1:[1]’-. Since the equiva-

lence class o (i) is never empty, this is in turn equivalent to
K EVi<y™3z (S(z) A é(i,x) A xF (b, z))

where x7% is given by the induction hypothesis and is Eg’-. We deal similarly
with sharply bounded existential quantifiers.

For the remaining cases, sharply bounded quantifiers are dealt with as
above. If @ is of the form 3y x(Z,y), where y is a 3%, formula for which we

have found a suitable X . translation s, we have

JE3yx(b,y) < JEx(b],[]) forsomeceS
& KEI2(S(2) A xy(b2)).

We treat I, formulas in a similar way.

To show that .J satisfies EZH—LIND, suppose f is a 22+1 formula and
JEOO0) AV <[y]™ (0(x) — 0(x +1)).

Then for the corresponding £%, , formula 6, writing 0,(¢(x)) for Jy (S(y) A
oz, y) N 0;(y)),

K= 0,(0(0)) ANVz <™ (05(¢(x)) = 0;(¢(z 4 1))).

So by £, —LIND in K, K  6;(¢(y™)) and hence .J = 0([y']™).

Finally, suppose I is an end-extension of K to a model of S} of the form
[0,a°"). Let J be the end-extension of K to a model of S} given by the
construction above if we take £ = 0. We claim that [ is isomorphic to J.
We can use our ordinary coding function to consider any x € [ as a sequence

xy...xa of numerals in [0,a). For z,y € I, y € S, put
¢'(z,y) & V1<i < (y); = x5,
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meaning “y codes z”. Just as in lemma 6.5, (x); can be used in I to encode
any ! definable £'-length sequence of numerals as an element of S, so in
particular, every element of I is coded by (at least one) element of S. Con-
versely, by normal comprehension in I, every element of S codes an element
of I. Also all the elements in an =; equivalence class in S must code the

same element of I. Hence the map
oix—{yeS:TE(r,y)}

is a bijection ¢’ : I +» J, and the definitions of the relations on S are set up

precisely so that it is an isomorphism. O

Corollary 6.7 Fori > 1, if K £ S} is of the form [0,a#a) and defines a
Yt function violating either injective or surjective WPHP between a and a?,
then K has an end-extension to a model M of Si in which #a is cofinal.
Furthermore this end-extension is unique, in that for any model N of S}

with N [a#a isomorphic to K, this isomorphism extends to an isomorphism
M = N | +#a.

Corollary 6.8 Fori > 1, let M be a model of S in which either injective or
surjective WPHP fails between a and a® for a 3% function with parameters in
0, a#ta). Then every X subset of [0, a#ta) definable in M with parameters
from [0, afta) (this is X2 without the bar, so we are allowing # to appear as a
function symbol in the bounds on quantifiers) is ¥t definable inside M | a#ta
(that is, with all quantifiers bounded by a#ta).

Proof Use the translation in the proof of theorem 6.6. O

Hence if the weak pigeonhole principle fails in an initial segment we cannot
define more complex sets by increasing the range of our quantifiers; all the
complexity in the structure is already contained inside that initial segment.

Another way of looking at this is that if the weak pigeonhole principle
fails then we can do computations from the polynomial hierarchy in constant
space. However this is at the expense of introducing more sharply bounded
universal quantifiers, and so increasing the time taken (in some sense).

The version of corollary 6.8 for 1A leads naturally to a proof by diagonal-

ization that the (parameter-free) Ay hierarchy does not collapse in a model
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in which WPHP fails [20]. See [18] for a discussion of the extent to which the
theory of an initial segment M [ b of a model of true arithmetic is determined
by M | a, for a < b, under various assumptions about the collapse of the

linear or polynomial time hierarchies.
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7 Definable structures

We look for a converse to the “definable end-extension” part of theorem 6.6.
We show that if a model J of arithmetic with a top is definable inside a model
K of S}, where K is of the form [0,a!%) and the domain of .J is a subset of
the interval [0, a), then either J is definably isomorphic to an initial segment
of K, or vice versa (theorem 7.4). If WPHP is true in K then it is the first
of these that holds and the initial segment is unique; hence in models of
S3 + WPHP we can precisely count sets if they come with sufficient internal
structure (corollary 7.8). However, a precise converse of this part of theorem

6.6 is impossible (see the remark after corollary 7.6).

7.1 Constructing an isomorphism

The proof is in two steps. Lemmas 7.1, 7.2 and 7.3 show that if an initial
segment of J is isomorphic to an initial segment of K then we can extend
that isomorphism to one with an exponentially larger domain. Theorem 7.4
then uses the extra room we have in K and the ability this gives us to code
short sequences of elements of .J to find an isomorphism with a small domain
to start us off.

Lemma 7.1 Let K & S} be of the form [0,a), and suppose J F R is X0
definable in K (see definition 6.3). Suppose further that for somet € S and

some ¢ < |a| there is a ¥Y isomorphism from K | ¢ onto J | |[t];|. Then
J[[t]s F Sp.

Proof We claim that for each £¢ formula ¢, there is a 3% formula ¢; such
that for all b € S,

Tt F o([bls) & K F ¢s(b).

We prove this by induction on the quantifier complexity of ¢. From the
definition of ¥%-definability we know how to translate open formulas into
formulas that are A% in S, which is precisely the property required, and we
can translate 3z 0(g, z) as dz (S(x) A 0;(7,z)). Lastly, suppose ¢ is of the
form Vi < [[t];|" 0(7,1), for # a £ formula and n € N. We extend our ¥
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isomorphism K [¢ 22 J [ |[t];| naturally to an isomorphism K [&™ = J I |[t],|",

given by a ¢ formula y say, and define
¢s(y) & Vi<e™ 3w (x(i, ) A0 (y, ).

To show that ¥t —LIND holds in J | [t];, suppose ¢ is a £¢ formula, n € N
and |[t];|" exists in J. Let y be a ¥t formula defining the isomorphism K |
g™ 2= JI[t]s|™. We will write ¢;(x(7)) as shorthand for 3z (x(i,z) A ¢;(x)).
Suppose

Sty E @(0) AVi<|[t],[* (6(2) = o(i +1)).

Then

K = ¢,(x(0)) AVi<e™ (¢5(x () = ¢s(x(i + 1))

Hence K E ¢;(x(c™)), so J[[t]; E o(|[t]s]™)- D

Lemma 7.2 If J E S} is 3% defined in K E S}, then the relations (z = 2°);
and (bit(z,i) = 1); are A} in S.

Proof The normal definitions of these relations do not use any sharply
bounded universal quantifiers (which would not in general translate into
sharply bounded quantifiers in K). So, if 0; is a representative of the 0

element of .J, we can put

(2=2); & S@ASGAIYSHAY=i+1)sA (2] =y))
ATz (S(2) A (z+ 1 =) A(lz] = 1)s);
i) A3y ((y =25 Ay =5 @);
(bit(z,i) =1); < S(x)AS(E) A0y <;iATJwIyIz(S(w) A S(y) A S(z)
ANw=2"YAz<;wA(z=y-2 - w+w+2));
(bit(x,i) #1); < S(x)AS(E) A0y <y iATJwIyIz(S(w) A S(y) A S(z)
ANw=2"YAz<;wA(z=y-2 -w+2)).

These relations will have the correct properties because J E Sg. U
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Lemma 7.3 Suppose K £ S} is of the form [0,a), J & R is ¥t defined in
K and for some n € N there is a 3% isomorphism between K [|a|™ and an
initial segment of J (where | |™) means a nesting of | |s that is n levels deep).
Then there is a 328 isomorphism, either from all of K onto an initial segment

of J, or from an initial segment of K onto all of J.

Proof Let t be (a representative of) the <;-greatest element of J. We
will inductively construct % isomorphisms with domains |a|®~V,. .., |a|,a
stopping if at any point we reach ¢ and exhaust J.

For the inductive step, suppose that ¢(z,y) is a 3% formula giving an
isomorphism from K [|a|™ onto an initial segment of .J.

Let i < |a|(™ be greatest such that

2 < |a|™ "V A 3w 3y, S(x) AS(y) A dli, o) Ayl == +1),

and let 7 be some such y. Then J [ |[r];| £ S} (since it is isomorphic to an
initial segment of K) so by lemma 7.1, J [ [r]; E S}. So we can choose r so
that it is a power of 2 in .J, and the equivalence class of r is the element of
J corresponding to 2° in K. Hence 2 is the greatest power of 2 which exists
in both K []a|™ Y and J (in some sense).

Define 0(z,y) as

r<2'ANy<;rAS(y)A
V1< <iFe, S() AB(j,2) A (bit(e, ) = 1 & (bit(y, 2) = 1),).

We claim that o : x — {y : 6(z,y)} is an isomorphism from K [ 2* onto
Jr]s.

To show well-definedness, suppose y,y" <; r with y #; 3. Then,
since J | [r]; E S§, without loss of generality we have (bit(y,v) = 1); and
(bit(y',v) # 1), for some v such that J F 1 < [v]; < |[r]s]. Since ¢ defines
an isomorphism, ¢(j,v) holds for some 1 < j < i. Hence if for some z,z’
we have [y]; = o(z) and [y']; = o(2'), we must have bit(z, j) # bit(z', j), so

x # x'. We show that o is injective in a similar way.
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To show that o is defined on all of K |2, let z < 2° and let x(j) be the

formula

Jy, S(y) AVILk<i3dz, S(2) Aok, 2)
Ak < j— (bit(z, k) =1 « (bit(y, 2) = 1);)]
Aj <k — (bit(y, z) # 1),]
expressing that some [y]; is the correct image of x up to its jth bit and the
remaining bits are 0. Then x(0) holds, and if for any j < ¢ we have that x(j)
holds and is witnessed by y, we can find the element of J corresponding to
2 and, depending on bit(x, j + 1), let 3’ be either y or (y + 27); (this sum
exists in J and is not too big, because J | [r]; E S3). Then 3’ witnesses that
x(j + 1) holds. Hence by ¢—LIND in K, x(i) holds and the set o(x) is not
empty. Similarly we use comprehension in K to show that o is a surjection.
Finally, since we can define all our relations bitwise, ¢ is an isomorphism.
To extend o to the rest of K [|a|™ ", notice that by our choice of i either
20 > |a|™=Y/2 or JE [r]; > [t];/2. So we map x > 2° to the set

{yeS:3z,p(x -2 2)A(y=r+2);}
if this is non-empty, which it will be until we reach the top element ¢ of J. [

Theorem 7.4 Suppose K = S¢ is of the form [0,b), and a,a® € K where
e > [b|™ for some n € N. Suppose J E R is ¥4 defined in K below a. Then
there is a X0 isomorphism, either from all of K onto an initial segment of

J, or from an initial segment of K onto all of .J.

Proof Let 0(i,w) be the formula

Vi k I<i, (wj+w,=w)y < j+k=1
AN(wj -wg=w)y>j k=1
ANwj <jwp+rjJ <k
A (|wi| = wi)s <> 1j] =k
ANwy =y 0y.

Let i < £ be greatest such that Jw <a'6(i,w) and let t = w;. We must

have i > 1, since we can set wy = 0y and w; = 1. Let ¢(z, y) be the formula
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S(y) Ny =y w,. We claim that o : z — {y : ¢(z,y)} is an isomorphism from
K [0, ] onto J [0, [t],]-

It is sufficient to show that o is surjective. Suppose it is not, and for
some s € S we have s <; t and Vj <i—¢(j,s). Let j < i be greatest such
that w; <; s. Then j < i and wj1=5s. But J E [wj]s = [w,]; + 1, so
J E [wjt1]s = [sj]s and hence w; 1 =, s, a contradiction.

If i <e—1, then ¢t must be the <; greatest element of .J (otherwise we
could add an extra element to w). Hence we have constructed an isomorphism
from an initial segment of K onto all of J.

If i = ¢ — 1, then we have an isomorphism from K | |b|™ onto an initial

segment of J and can use lemma 7.3. U

The next lemma has the consequence that if our defined structure .J is

isomorphic to an initial segment of K, then that initial segment is unique.

Lemma 7.5 Suppose K F S} and there is a X° isomorphism o between K [a

and K [b. Then o is the identity function and in particular a = b.

Proof First notice that o must be the identity at least up to |a|, since oth-
erwise there would be a least ¢ < |a| for which (i) # i, which is impossible.
Now suppose x < a and o(x) = y. Then |y| < |b] = o(]a|]) = |a|, and for

each i < |al,
(K [a E bit(z,i) = 1) <> (K [b E bit(y,o(i)) = 1)

since o is an isomorphism. But o(i) = ¢ for all such i. Hence z = y. 0

7.2 Corollaries

Corollary 7.6 Suppose K E S} is of the form [0,a%), for e = |a|™ some
n € N, and that K is isomorphic to a structure J that is X% defined in
K below a. Suppose further that K is not isomorphic to any proper initial
segment of K. Then there is a 3% formula ¢ giving an isomorphism J = K.
Hence (multifunction) WPHP fails in K. In particular, if S (the set on
which J is defined) is all of K [ a, then ¢ gives a surjection a— a®; if each
=7 equivalence class has precisely one member, then ¢ gives an injection
a® —a.
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We cannot do without the condition “K is not isomorphic to any proper
initial segment of K” because otherwise we have the following counterex-
ample. Let M be any countable nonstandard model of PA. By Friedman’s
theorem, there exist a,b € M with M [al®l 2 M [0 and ¢/ < b. Hence the
structure defined inside M [ b on the set [0,a/*l) by the normal relations is

isomorphic to M [bl; but the weak pigeonhole principle does not fail in M.

Corollary 7.7 If K E PA'™ is of the form [0,a) and is not isomorphic to
any proper initial segment of itself, then for all n € N no end-extension of
K to a model of PA*P of the form [O,a“”(")) is definable in K.

Proof All the relevant results above go through if we use formulas of unre-
stricted quantifier complexity in the place of X% formulas. Then use the fact
that 1A + (al?™ exists) proves PHP? (Ay). O

We can interpret theorem 7.4 and lemma 7.5 as saying that a ¥4 set in
a model of S} is either bigger than the model or has a unique precise size in
the model, provided of course that this set comes with lots of structure and
that we take counting statements to be about the existence of isomorphisms,
rather than just bijections. In some ways this is a natural step, similar to
moving from cardinal to ordinal numbers by adding an ordering relation.

We can use the weak pigeonhole principle to make sure that our definable
structures do not get too big, and in particular to keep them inside a model
of S3. We summarise this as: in a model of Sy satisfying WPHP we can pre-
cisely count structured sets. We make this precise below, using the injective
WPHP. There are similar results for surjective or multifunction WPHP.

We will say that a ¥ set S is structured if it is bounded and there are
relations <g, | |5, +g, ‘s that are A% in S such that (S, <s,| |s, +s,s) F R.

Corollary 7.8 Let M £ S! + VYo PHPY (S0 and suppose S is a structured
b subset of M, with relations <s,| |s,+s,-s. Then there exists a unique
b€ M for which there is a X% function f : (S, <s,| |s, +s5,5) = M Ib.

Proof Suppose S is bounded by a. Notice that we are using X? sets here,
where theorem 7.4 applies to 3¢ sets. However, since we are only interested

in subsets of [0, a) and the quantifiers in a ¥t formula are bounded by terms,
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we can find b in M such that all of the sets considered are ¥ definable inside
M |'b. Let ¢ be greater than both b and al*. Let K = M [ ¢, and apply
theorem 7.4. If there is a 3? isomorphism from S onto an initial segment of
K, then we are done. If not, then there is a $¢ isomorphism from K onto

an initial segment of S, and hence there is a % injection ¢ < a, violating
WPHP. OJ

These results (except for corollary 7.7, where we have to be very careful
about the classes of formulas for which induction holds in our end-extension)

also hold in the relativized case. For example, we have

Theorem 7.9 Suppose (K,«a) E S(a) is of the form [0,b), and a,a® € K
where ¢ > [b|™ for some n € N. Suppose J F R is 34 (a) defined in (K, o)
below a. Then there is a ¥4 (a) isomorphism, either from all of K (without

the o) onto an initial segment of J, or from an initial segment of K onto all
of J.

Corollary 7.10 Let « be a set {+*,-*, <*| |*,0%, 1*,2*} of relation and con-
stant symbols of the same form as but disjoint from our normal language of
arithmetic. Let R* and Sy* be our normal theories re-written in this language.

Then “every finite model of R is a model of S}”, or
Va, ({[0,a), @) £ R*) = ({[0, a), @) F Sp*),
is provable in S}(a) + Ya PHPY (3% (a)) but not in S2(c).

Proof The independence from S%(«) follows from theorem 5.3 since there
is an infinite model of R that is not a model of Sj.

Now suppose that in a model of Si(a) + Va PHP® (3¢(a)) the structure
J =([0,a),a) is a model of R*. Then by the relativized version of corollary
7.6 J is definably isomorphic to an initial segment of M (in the normal

language, without «). Hence J is a model of S}*. U

This highlights one reason why it is difficult to find relativized indepen-
dence results for theories as strong as or stronger than S3(a). S3(«) proves

WPHP (X (), so there is a class of sentences in the language of o (namely
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those of the form o« £ R — ®(«)) that are as hard to prove independent
of S3(a) as their unrelativized versions are of S5, since if such a sentence is
false in the structure given by « it will also be false in an initial segment of
a model without a.

Open Problem 7.11 Find the weakest theory that will work in the place
of R to give the results of this chapter. For example, is it sufficient if our
structure J is only assumed to be a model of a universally axiomatized theory
of “discretely ordered abelian groups with a greatest element” in the language
{0,1,e,<,+, —, | 3], parity} (with some sort of modulo addition)? (In this
case multiplication should be definable, in the model K & Sk in which J is
defined, in terms of repeated doubling.)

The techniques from chapter 5 may be of some help in proving a lower
bound, for the relativized case.
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8 Generalizing WPHP

We consider the consequences for a structure of the presence or absence of
a definable surjection from a subset P onto the whole structure. This is a
generalized version of the surjective WPHP. We use some tools from abstract
model theory, but most of the interesting applications are to models of PA®P
and hence, indirectly, to IAy. In the first section we look for converses to the
“unique end-extension” part of theorem 6.6. This works for models of PA™P
(corollary 8.3) and we obtain a partial converse for models of S§ (corollary
8.7). In the second section we characterize WPHP in terms of the possible
cardinalities of initial segments of a model (corollary 8.13) and construct an
uncountable model of Sy in which the polynomial size sets are precisely the

countable sets (corollary 8.14).

8.1 Categoricity

Lemma 8.1 Let M be a recursively saturated structure with o definable sub-
set P containing at least two elements 0, 1 which are named in the language.
For any formula ¢(y), if for all k € N there is no parameter free definable
surjection from P¥ onto ¢(M) U {0}, then there is ¢ € ¢(M) such that ¢ is

not definable with parameters from P. The converse also holds.

Proof Recursively enumerate all parameter free formulas as (7, 7),

Vo(Z,7), ... where we assume T has arity at most ¢ in ;. Let I['(7) be the
type
{6(m)} U {/\ Vz C P “j is not unique such that ¢;(z,7)” : m € N}
i<m

Suppose [' is not finitely satisfiable in M. Then there is a finite sequence of
formulas ¢y, ..., ¢, (where we now assume that each Z has arity m) such
that for each ¢ satisfying ¢, there exist i < m and d C P for which ¢ is unique
such that 1;(d, ).

Define a surjection f : P?™ — ¢(M) U {0} as follows: given (ai,...,an,
di,...,dy) € P ifforsomei<m,a;=...=a;=0,a,,1=... =0y =1
and M F 315 ¢(§) A;(d, §) then map (@, d) to that unique 7; otherwise map
it to 0. This contradicts the assumption that there is no such surjection.
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Hence I', since it is recursive, is realized in M. Clearly any element
realizing it is not definable from P.

The converse direction is trivial. O

Corollary 8.2 Let M be a recursively saturated model of PAY™ of the form
[0,b) and let a € M be such that a* < b for all k € N. Suppose M =
PHP,‘,‘k(AU), for every k € N. Then M is not relatively categorical over [0, a)
with respect to Th(M).

Proof Let K = K([0,a); M), the definable closure of M [a in M, which
is elementarily equivalent to M but omits the type “y is not definable from
[0,a)”. This type is realized in M, by lemma 8.1. So M and K are both

end-extensions of M [a, but are not isomorphic. 0]

This is how the pigeonhole principle is typically used in the model theory
of arithmetic, see for example [10] or chapter IV of [8]. We can now write
down a characterization of the provability of WPHP in IA:

Corollary 8.3 1A, - Vz PHP.(Ay) if and only if for every recursively sat-
urated model M of PA*™P of the form [0,b) and every a € M with a™ < b,
there is more than one end-extension of M [a to a model of PA of the form

[0,b) (we assume b is definable from parameters in [0, a)).

Hence for 1A, we have a neat model-theoretic characterization of WPHP,
in terms of relative categoricity.

With the ultimate goal of extending this to weaker theories and finding
a converse of the part of theorem 6.6 that showed that failure of WPHP
in a model of S implies relative categoricity, we give a proof of Gaifman’s
coordinatization theorem, that (assuming WPHP) to get two different models
with the same restriction to P, we do not need definable Skolem functions,
but only rigidity over P. In normal arithmetical situations we will always

have this, in a very strong sense.

Lemma 8.4 Suppose in K E BASIC' we can define a parameter-free func-
tion bit(x, 1) and prove that no two numbers in K encode the same sequence
of bits. Then for any b € K, no two elements of K smaller than b share the
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same type over [0,|b]). Hence K b is rigid over K [|b|, and by repeating the
argument K b is rigid over K [|...|b|...|, for any nesting of | |s (see Kaye

[10]).

We prove a simple version of the coordinatization theorem that makes

direct use of this property that an element is uniquely given by its type.

Lemma 8.5 Suppose M s a structure with a definable subset P such that
no two elements of M have the same type over P. Then the principal types
over P are realized in M by precisely the elements of M that are definable
from P.

Proof Suppose p(z) = tpy(c; P) has a principal formula ¢(x) with param-
eters from P. Then we must have 3!z ¢(x), or two elements of M would have

the same type over P. Hence c is definable from P. 0]

Theorem 8.6 (Gaifman [9]) Suppose M is a countable recursively satu-
rated structure in a language with no function symbols and with a definable
subset P which contains all the elements named by constants. Suppose that
P contains at least two elements 0, 1 named in the language, that there is
no parameter-free definable surjection from any standard power of P onto M
and that no two elements of M have the same type over P. Then there is
N = M such that N [P = M | P but this isomorphism cannot be extended to

an isomorphism N = M.

Proof List the elements of P(M) as 7. By lemma 8.1 there is ¢ € M not
definable from 7, and by lemma 8.5 the type p(z) = tpas(c; 7) is not principal.
The type

qly) ={Py)u{y#r:rer}

is not principal either, since it is not realized in M. Hence there is a structure
(N,7) = (M,7) omitting both p and ¢. Since (N,7) omits ¢, N [ P is
isomorphic to M [ P. Since (N,7) omits p, this isomorphism cannot be
extended to an isomorphism (N, 7) = (M, 7). O
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Corollary 8.7 Let M be a countable recursively saturated model of S¢ of
the form [0,b), and let a € M be such that |b] < a, a < b and M is
relatively categorical over [0,a) with respect to the complete theory of M.
Then M E ﬁPHP,‘fk(f) for some k € N and some definable function f.

This is not a very good converse to theorem 6.6, since it uses the com-
plete theory of M and we cannot limit the quantifier complexity of f. The
ideal result would be something like: relative categoricity with respect to Sg
implies failure of surjective WPHP for a ¥} function. However it is not clear
whether this is attainable. It would mean that in S} surjective WPHP(X})
implies injective WPHP(X%), and we showed in chapter 3 that if this were
true for PV function symbols (rather than for X% formulas) then we could
crack RSA.

8.2 Cardinality

There are many combinatorial principles in arithmetic which are normally
proved by counting arguments, but which turn out only to need approximate
rather than precise counting. There have been some successes in proving
these in Sy using the weak pigeonhole principle, which could be taken to say
that, as far as definable functions are concerned, n? is bigger than n. See for
example Pudldk’s proof of the Ramsey theorem [24] or the proof that there
are infinitely many primes [21]. It would be nice to be able to characterize the
approximate counting available in bounded arithmetic and to give a uniform
way of dealing with combinatorial proofs that make use of it.

If there is no definable map from a onto b, one would sometimes like to
say that the “definable cardinality” of b is bigger than that of a; Krajicek has
suggested developing this idea into a theory of the definable combinatorics
of a structure [14], [16].

We present a simple application of Vaught’s two-cardinal theorem (see [9])
to give a result in this direction, that in a countable, recursively saturated
model of a theory with Skolem functions (such as PA), we can choose any
definable set P and extend the model to one in which P is unchanged, hence
still countable, but every other definable set has greater cardinality than P

if and only if it has greater definable cardinality than any standard power of
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P. This may be of some use in formalizing approximate counting arguments
in Sy, and leads to an interesting characterization of the polynomial size sets
in models of S,.

In our setting we can sharpen the two-cardinal theorem slightly, using
resplendence. First, however, we will use the normal version to prove a
second model-theoretic statement equivalent to the provability of WPHP in
IA.

Theorem 8.8 IAj(«) - Vo PHPL. (Ay(«)) if and only if for every countable
model K of PA™ () of the form [0,b) and every a € K for which a¥ < b

there is some uncountable J = K in which J[a is countable.

Proof For the forwards implication, extend K to a recursively saturated
structure K', and let I be the definable closure of K’ [a in K'. Then as in
the previous section, I < K', I [a = K' [a but by WPHP, I € K’ so we can
apply the two-cardinal theorem to get .JJ. For the other direction, if there is
a definable surjection a— a? then we can amplify it as in the proof of lemma

3.6 to a surjection a—b. So .J and .J [ a must have the same cardinality. [

Lemma 8.9 (Resplendence [11]) Suppose M is a countable recursively
saturated L-structure in a recursive language L, the language L' is a re-
cursive extension of L and T is a recursively axiomatized L'-theory. Then,
if Th(M) 4+ T is consistent, there is an expansion of M to L' satisfying T .

Lemma 8.10 Let L be a recursive language, ¢(x), 1(x) be parameter free
L-formulas and M, N be countable L-structures such that M is recursively
saturated, N < M, ¢(N) = ¢(M) and »(N) C »(M). Then there is M' =
M such that ¢(M) = ¢(M'), p(M) C (M') and M = M'.

Proof Let Lt = LU {H, f} where f is a one-place function and H is a
one-place predicate. Writing x for the relativization of y to H, let T be

the following set of sentences:
1. H is the range of f;

2. Vz C H(x"(x) +> x(z)) for each L-formula y;
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3. Vz (0(z) <» 0(f(z))) for each atomic L-formula 6;
1. Ve (8(x) > H(@));
5. Jx (Y(x) A —H (x)).

By the proof of Vaught’s two-cardinal theorem (in [9]), there are struc-
tures U,V with M <V such that U <V, ¢(U) = ¢(V), ¥(U) C (V) and
there is an isomorphism V' = U. So we may expand V to an LT structure
satisfying T' by interpreting H as membership of U and f as the isomorphism
V=U.

T is a recursive theory, and we have shown that Th(M)UT is consistent.
Hence by lemma 8.9 we can expand M to an L™ structure satisfying 7.

So M is isomorphic to an elementary submodel M~ of itself, with
d(M~) = ¢(M) and Hp(M~) C (M). By identifying M with M~ we
can find an elementary extension M’ of M with the properties required. [J

Lemma 8.11 The union of a countable elementary chain {M, : v < §} of
countable, recursively saturated structures isomorphic to My is a countable,

recursively saturated structure isomorphic to M.

Proof The union is recursively saturated and realizes the same types as
M. O

Theorem 8.12 Let M be a countable, recursively saturated structure with
definable Skolem functions in a recursive language. Let P be a definable sub-
set of M containing at least two elements. Then we can find N = M such
that P(N) = P(M) but the countable definable subsets ¢(N) of N (with pa-
rameters from N ) are precisely those for which there is a definable surjection
(with parameters from N ) from some standard power of P(N) onto ¢(N).
FEvery other definable subset is uncountable.

Proof By the existence of Skolem functions there are two definable ele-
ments of P; add names 0, 1 to the language for these. We will construct
an elementary chain {Mjs : f < w;}, with My = M, of pairwise isomorphic
structures such that for all § < wy, P(Mg) = P(M,) and for any formula

¢(x) with parameters from Mg, if there is no definable surjection in Mz from
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any standard power of P onto ¢(Mgz) then ¢p(Mgy1) DO ¢(Mg). By lemma
8.11 we can put Ms; = (Jz_5 Mp for ¢ a limit.

For the successor step, enumerate as ¢1(x), ¢o(x), ... the formulas with
parameters from My for which there is no surjection (with parameters from
Mgp) from any standard power of P(Mjg) onto ¢;(Mp), and for which ¢;(Mjp)
is non-empty. Let m; C Mg be the tuple of parameters appearing in ¢;.
Writing P for P(Mgs) = P(M,), let K, := K(P Umy; Mg) be the definable
closure of PUm, in Mg. There is no surjection with parameter 7m; from any
standard power of P onto ¢;(Mp), so there is certainly no surjection onto
¢1(Mpg) U {0}. Thus, temporarily adding m; to the language, by lemma 8.1
there is ¢ € ¢1(Mp) not definable from P with parameter my; so ¢ ¢ K.

Now K; < Mpg, P(K,) = P(Mjg) and ¢,(Mp) D ¢1(K) so by lemma 8.10
there is My = My with M} = Mg, P(My) = P(Mpg) and ¢;(My) D ¢1(Mp).
Similarly, if we let Ky = K (P U mgy; Mg) then ¢o(Mg) D ¢a(K>3) so we can
find M3 = M} with M3 = M}, P(M3) = P(Ms) and ¢o(M32) D ¢o(M}).
Repeating this step for ¢3, @4, ... gives an elementary chain Mz < Mé =<
Mg =< ... and taking the union of the chain gives us, by lemma 8.11, Mg ; =
Mpg with the properties required.

Let N = s, Mp. Suppose ¢(x) is a formula with parameters n C N
such that there is no surjection definable with parameters from N from any
standard power of P onto ¢(N). Suppose i C Mp for some f < w;. Then
for each 8 < v < wy, there is no surjection with parameters from M., from
any standard power of P onto ¢(AL,), by elementariness. So by construction
d(My41) D ¢(M,). Hence ¢(N) is uncountable.

Conversely, if there is a surjection from P* onto ¢(N), for k € N, then
¢(N) must be countable because P* is. O

Corollary 8.13 If K is a countable, recursively saturated model of PA™P(«)
of the form [0,b) containing an element a such that K F PHP,‘)‘k(AO(a)) for
every k € N, then there is J = K with J[a = K [a but with J | ¢ uncountable

for every ¢ > a.

There are similar, rather stronger results for full Peano arithmetic in Paris

and Mills [19], but these make heavy use of precise counting.
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One cannot in general repeat this increase in size more than once. For
suppose we have a countable recursively saturated structure K E PA™P +
Vo PHPZ,(Ay) of the form [0,b), with [b|Y < b. We can find J = K of
cardinality N; with J [ |b] = K [|b|. If we could go on to find an elementary
extension [ of J with cardinality Ry and with I [|b] = K [ |b|, then this would
imply a violation of the continuum hypothesis, since the function that takes
an element of I to its set of non-zero bits is an injection from [0,b) into the
power set of [0, |b]).

So if we could find a way of adding a predicate a to a model of PA™P
which ensured either that we could not increase the cardinality of part of the
model in this way, or that, whenever we could increase the cardinality, we
could do so more than once, we would have gone some way towards showing
that WPHP («) is independent of IAy(a).

We give one more application of the two-cardinal theorem.

Corollary 8.14 Suppose M is a countable model of So, a € M and #a is
cofinal in M. Then there exists an uncountable N >, M in which the coded

sets are precisely the countable bounded Aq sets.

Proof Let M’ be a recursively saturated extension of M, so b > #a for
some b € M'. Let B = M'|b, so B PA'" and B is recursively saturated.
Let C > B be given by theorem 8.12, taking P to be the definable set
“o < |a|”. Let N = C [ #a.

Note that for each £k € N, M f2|“‘k <N [2‘“"“. Hence M <5, N and if
N E Jzb(m,z) for 0 a Ay formula and m C M, we must have N F Jz <
211" 9(m, z) for some k € N; so M E Iz < 219" §(m, x). This shows that
M <q, N.

Now suppose S is a subset of N coded as a sequence (o), ..., (o), for
some ¢ € N. Then [ < |a|* for some k € N, and N | |a|f is countable, so S
must be countable.

Conversely, suppose that S C N |2/ is countable and is defined by a
Ay formula ¢(x). Then S is also definable by ¢ in C, so by the construction
of C there exist [ € N and a definable function f such that f is a surjection

from |a|’ onto S.
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Since S is bounded by 21" we have that C £ Vi<|a|' f(i) < 219", So by
comprehension in C, there is some o < 21" in ¢ with C' £ Vi< |a| f(i) =
(0);. Thus C' E Vo <219" | ¢(z) <> Ji<|a|' (¢); = . This is a Ay formula, so
is also true in N. Hence S is coded in N, by o. 0
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