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The interest in solving counting problems has many practical motivations. No-
tably, many issues that are important in statistical physics and artificial intelli-
gence can be modelled as counting problems. For example, in the part of artificial
intelligence that is devoted to approximate reasoning, several problems arise that
are equivalent to counting the number of solutions of a propositional formula (cf.
[Rot96]).

Most naturally, however, counting problems arise in a purely mathematical con-
text as generalizations of decision problems. The latter ask for the existence of
certain combinatorial objects, whereas the former pose the question for the num-
ber of these objects. One important example of a counting problem is the problem
of computing the permanent, which, in its combinatorial interpretation, asks for
the number of perfect matchings in a given bipartite graph.

Already in the 19th century it has been observed that, apparently, there is no
way to solve the permanent problem without much computational effort. But
it was not until the development of computational complexity theory that the
measurement of computational effort was grasped formally. Hence only about 30
years ago the necessary complexity theoretic notions of counting problems could
be formed by Valiant, who even found formal evidence for the apparent hardness
of the permanent problem.

More formally, Valiant defined the class #P and showed that the permanent
problem is complete for this class (cf. [Val79a]). In short, a counting problem is
contained in #P if its results can be represented by the number of accepting runs
of a polynomial time nondeterministic Turing machine. A class of computationally
easy problems within this class is called FP, which denotes all counting problems
that can be computed by a polynomial time deterministic Turing machine.

With the proof that the permanent problem is #P complete, Valiant showed that
it is very unlikely for this problem to be contained in FP. Unfortunately, analogous
results have been shown for many interesting problems, implying that one cannot
hope to solve them efficiently.

As analogous hardness results have been shown for many decision problems as
well, complexity theory soon became devoted to the question how to circumvent
this hardness. Much effort has been spent in trying to approximate the solutions
of these problems or to find restrictions of the problems under consideration that
could be solved efficiently.

If exact solutions are desired, one has to rely on the restricted case analysis.
For counting problems, especially in the work of Vadhan (cf. [Vad01]) and Roth
([Rot96]), it has been shown that the approach of considering only very restricted
subsets of certain problems does not help much in most of the cases, as even many
restrictions remain #P complete. Thus one might want a different way of finding
exact solutions and circumventing the hardness to some extend.

In the field of decision problems there is such an approach called parameterized
complexity, which has become quite popular in recent years. Its underlying idea
is readily understood.

Complexity theory measures, for example, the time needed to solve a certain
problem by the size of the input. Especially with respect to classification results
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as mentioned above, this way of measuring complexity might seem unfortunate,
since almost all structural information of the instances is lost. Parameterized
complexity aims at describing some (important) part of the structure of a problem
by a parameter. This idea together with some of its implications has led to new
paradigms in designing efficient algorithms and encouraged the development of a
whole new theory of intractability.

As opposed to decision problems, a theory of parameterized counting problems is
still in its early stages. Structural issues of this theory, for example, have been
considered only by McCartin (see [McC02]) and Flum and Grohe (cf. [FG06]).

In this thesis we will consider the two branches of parameterized complexity
in the context of counting problems. The first part will be devoted mainly to
parameterized algorithm design. For decision problems there is an important
technique called kernelization that is applied in many parameterized algorithms.
As this technique has yet no analog for counting problems, we will examine ways
of applying it to counting problems. This will be the work of chapter 1 and 2.
In chapter 3, we will know enough about the application of this technique such
that we will be able to develop a formal characterization of it. Furthermore we
will see that this characterization is equivalent to the notion of the tractability of
parameterized counting problems.

As certain results from chapter 2 have implications on the structural theory of
parameterized counting problems, we will reckon these by proposing a redefinition
of some of its complexity classes.

The second part of this work deals with the intractability of parameterized count-
ing problems. Most importantly, we will see that the parameterized problem of
counting bipartite cliques in bipartite graphs is complete for the class #A[1]. To
a certain extend, this class can be considered as a parameterized analog of #P.

Furthermore, in chapter 6, we will prove that the parameterized problems of
counting induced cycles and paths are #A[1]-complete as well. Eventually, we
will summarize some of the results demonstrated and give an impression of the
difference between (classical) complexity theory and parameterized complexity
theory in classifying certain problems.

Preliminary Definitions

We assume that the reader is familiar with some basic notions from discrete
mathematics, and in particular with the ”big Oh” notation and its relatives.

For a set S let
(
S
k

)
denote the family of all k-element subsets of S. Furthermore,

2S denotes the family of all subsets of S.

A graph is a pair G = (V,E) with V being a set of vertices and E ⊆ (
V
2

)
a set of

edges. For v ∈ V we call NG(v) := {w ∈ V | {v, w} ∈ E} the neighborhood of v in
G and dG(v) := |NG(v)| the degree of v in G. If the graph G is clear from context,
we simply omit it from the subscript of the given concepts.

We define ∆(G) := max{dG(v) | v ∈ V } as the maximum degree of G and analo-
gously δ(G) := min{dG(v) | v ∈ V } denotes the minimum degree of G.
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A path in a graph G = (V,E) is a sequence of vertices v1, . . . vn such that vi ∈ V
for all i ∈ [n] and {vi, vi+1} ∈ E for all i ∈ [n − 1]. Two vertices u, v ∈ V are
connected in G if there is a path from u to v in G. A connected component of G
is a maximal subset C ⊆ V such that every pair of vertices u, v ∈ C is connected
in G. G is connected if C = V holds for a connected component C.

A directed graph or digraph is a pair G = (V,E) where E ⊆ V × V .

A bipartite graph is a triple B = (U,W,F ) such that F is a set of edges e ∈ F
that satisfy e ∩U 6= ∅ and e ∩W 6= ∅. We say that F is a set of edges between U
and W . Bipartite digraphs are defined analogously.

A hypergraph is a pair H = (V,E) with V being a set of vertices and F ⊆ 2V

a family of sets of vertices, called hyperedges. H is called d-uniform if all of its
hyperedges have cardinality d. The size of a hypergraph H = (V,E) is defined
as

‖H‖ := |V | +
∑

e∈E

|e|

Note that this defines the size ‖G‖ of a graph G as well, since every graph is a
2-uniform hypergraph.

Now, we will explain the basic notions needed to understand parameterized com-
plexity. We will introduce these notions for decision problems, which facilitates
explaining their analogs for counting problems.

Parameterized complexity mainly relies on two notions, that of parameterized
problems and fixed parameter tractability. Recall that a language Q over a finite
alphabet Σ is a set of strings, that is Q ⊆ Σ∗.

Definition 0.1. Let Σ be a finite alphabet

• A parameterization of Σ∗ is a mapping κ : Σ∗ → N that is polynomial time
computable.

• A parameterized problem over Σ is a pair (Q,κ) that consists of a language
Q over Σ and a parameterization κ.

For natural problems Q ⊆ Σ∗ we mainly consider parameterizations κ such that
for x ∈ Σ∗ the value κ(x) (i.e. the parameter of x) is small in comparison to the
length |x| of x. An example will make this more clear.

Consider a graph G = (V,E). A vertex cover in G is a set S ⊆ V of vertices such
that S ∩ e 6= ∅ holds for all edges e ∈ E. A vertex cover S has size k if |S| = k.
The classical vertex cover problem is defined as follows.

VertexCover

Instance: A graph G = (V,E) and k ∈ N
Problem: Decide if there is a vertex cover of size k in G

The corresponding parameterized problem, defined by a ”natural” parameteriza-
tion, includes the size k of the vertex cover sought into the parameter.
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p-VertexCover

Instance: A graph G = (V,E) and k ∈ N
Parameter: k
Problem: Decide if there is a vertex cover of size k in G

Considerations about the complexity of this problem regard k as fixed whereas
the size of the input graph may grow arbitrarily. From a practical point of view
this is motivated by the fact that often one is interested in small vertex covers no
matter how large the graph G may be. This is the notion of the small parameter,
which in turn motivates a refinement of the definition of a tractable problem.
In parameterized complexity a problem is regarded as tractable if, except for an
arbitrary dependence on the parameter, the problem can be solved in polynomial
time. The following definition formalizes this notion.

Definition 0.2. A parameterized problem (Q,κ) is said to be fixed parameter
tractable if there is a (deterministic) algorithm A and a computable function
f : N→ N that for any x ∈ Σ∗ decides x ∈ Q in time

f(κ(x)) · |x|c

for some constant c. In this context A is an fpt-algorithm with respect to κ.

By FPT we denote the class of all fixed parameter tractable problems.

In the case of p-VertexCover, for example, there is an algorithm, solving this
problem in time 2O(k)n with n := |V | + |E|. Hence for small values of k this
problem can be solved efficiently.

These notions can be transferred to counting problems. In general, a counting
problem is a function F : Σ∗ → N for a finite alphabet Σ. Similarly to the case of
decision problems, one can define parameterized counting problems.

Definition 0.3. Given a finite alphabet Σ.

• A parameterized counting problem is a pair (F, κ), such that F : Σ∗ → N
and κ is a parameterization.

• Accordingly, a parameterized counting problem (F, κ) is fixed parameter
tractable if there is an fpt-algorithm with respect to κ that computes F .

• The class of all fixed parameter tractable counting problems is denoted by
#FPT .

With our example from above the natural counting problem corresponding to
p-VertexCover is defined as follows.

p-#VertexCover

Instance: A graph G = (V,E) and k ∈ N
Parameter: k
Problem: Compute the number of size k vertex covers in G
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We will fix some further notation. Given an instance x ∈ Σ∗ of a parameterized
counting problem p-#Problem we define #problem(x) as the image of x under
the function realized by p-#Problem. For example #vertexcover(G, k) denotes
the number of size k vertex covers of the graph G.
From now on, we will define only parameterized counting problems. Given such
a problem p-#Problem we always refer by p-Problem to the decision problem
connected with p-#Problem, without explicitly defining it.
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Part I.

Kernelization and The Tractability of
Parameterized Counting Problems





In the field of parameterized decision problems, the concept of kernelization is
one of the most powerful tools for designing efficient fpt-algorithms. Kernelization
itself, however, is only a general notion that comprises a variety of techniques for
reducing the size of the input of a problem.

Definition 0.4. Given a parameterized decision problem (Q,κ) over a finite al-
phabet Σ.

A kernelization of (Q,κ) is a polynomial time computable function K : Σ∗ → Σ∗

satisfying the following conditions:

• x ∈ Q⇔ K(x) ∈ Q, for all x ∈ Σ∗

• There is a computable function g : N→ N such that for all x ∈ Σ∗ we have

|K(x)| ≤ g(κ(x))

K(x) is called the kernel of x.

Informally, given an instance x of any problem, a kernelization plays the role of a
precomputation, which reduces the size of the instance until it depends only on
the parameter. Then an algorithm, which might even be a brute force algorithm,
can solve the problem on the kernel efficiently, as the kernelK(x) may be assumed
to be small in comparison to x.

This technique has indeed created some of the most efficient fpt-algorithms and
it is one of the most frequently applied approaches in parameterized algorithm
design. Considering this popularity of kernelization in the field of decision prob-
lems one would naturally ask, if this notion can be applied to counting problems
as well.

Unfortunately, the notion given above is generally not sufficient to satisfy a def-
inition of a kernelization for counting problems. This is due to the fact that, by
definition 0.4 given a counting problem (F, κ) and an instance x ∈ Σ∗, it is not
necessarily the case that F (x) = F (K(x)). In a reasonable notion of kernelizations
of counting problems, however, this would be a necessary condition. Nonetheless,
an adaptation of the notion above for counting is not as obvious as is seems. For
example, if we stipulate that F (x) = F (K(x)) for all instances x ∈ Σ∗, then this
would be way too restricted. Even the p-#VertexCover problem could not be
described by this refined notion. The following example illustrates why this is the
case.

Example 0.5. Let G = (V,E) be a graph and k ∈ N. Let K : Σ∗ → Σ∗ be
a function mapping instances of p-#VertexCover to instances of the same
problem and let g : N→ N be a computable function. Furthermore, let K be such
that for all graphs H we have |K(H, k)| ≤ g(k).
Suppose that #vertexcover(K(G, k)) = #vertexcover(G, k). As K(G, k) is an in-
stance of p-#VertexCover, we have K(G, k) = (G′, k′) for a graph G′ = (V ′, E′)
and k′ ∈ N. As ‖G′‖ ≤ g(k), we know that there can be no more than

(g(k)
k′

)
vertex

covers of cardinality k′ in G′.
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Let H = (W, ∅) be a graph with |W | = g(k) + k. It is easy to see that

#vertexcover(H, k) =
(
g(k) + k

k

)
>

(
g(k)
k

)
≥ #vertexcover(K(H, k)).

This example shows that a mapping K cannot be applied to p-#VertexCover
such that it satisfies both definition 0.4 and F (x) = F (K(x)) for all x ∈ Σ∗.
For the time being, we will abandon any attempt to give a formal notion of
”kernelization of counting problems”. Hence our aim in this part of the thesis
will be to examine certain techniques that are applied in kernelizations of decision
problems. Learning about the way these techniques can be applied in counting
algorithms will help to understand what might be a reasonable notion for these
counting kernels.

Even though we drop the formal definition of a kernel, we want to fix some
important requirements that we think are essential for a counting analog of ker-
nelizations.

Requirement 0.6. A preprocessing, if performed, can be done in polynomial
time. Furthermore, after preprocessing, the part of the instance that will be solved
by a search algorithm has a size that is bounded by a function of the parameter.

For convenience we will denote these preprocessings or data reductions by ker-
nelizations. This will cause no ambiguities as it will be clear from context if we
refer to counting or decision problems. In cases where ambiguities might arise,
we refer to the precomputations as counting kernelizations.

Time measures for arithmetic computations

We will use a standard model of random access machines (RAM) for analyzing the
time complexity of the algorithms discussed in this work. In this model we allow
addition, subtraction, multiplication and divison of natural numbers as arithmetic
operations. Note that models of this kind are applied only in the analysis of
practical algorithms. In a purely theoretical context allowing multiplication and
division as operations is not common.

In algorithms for counting problems the arithmetic computations play an impor-
tant part. Therefore, in determining the time complexity of an algorithm it is
advisable to explicitly measure the time spent in these computations. Naturally,
there are two different measures that come to mind (see, for example [AHU74]):

1. The uniform cost measure (UCM), considers every basic operation to take
unit time.

2. The logarithmic cost measure (LCM) treats the operations, depending on
the length of the operands.

Generally, the uniform cost measure is used, when it is known that the numbers
the algorithm has to deal with do not exceed certain bounds. Such a bound might,
for example, be the register size of a computer. Accordingly, the logarithmic cost
measure applies to all cases in which this cannot be guaranteed.
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Time measures for arithmetic computations

For simplicity, we will use the uniform cost measure if not stated otherwise. This
implies that all basic arithmetic computations can be carried out in constant time.
However, as the numbers involved in the computations can become quite large we
will pick some cases were, additionally, we apply the logarithmic cost measure.

We are mainly interested in the complexity of arithmetic operations. There-
fore, when we apply the logarithmic cost measure this will only be the case for
arithmetic operations. All other operations will still be treated by the UCM.
This distinction is motivated by the fact that apart from an extensive use of
arithmetic operations, counting algorithms do not differ very much from decision
algorithms.

To be able to apply the LCM, we need to know the time arithmetic computations
take. All numbers will be considered as binary. Given two numbers a and b,
assume w.l.o.g. a = max{a, b} and let n := dlog ae. For simplicity, we refer to
both a and b as n-bit numbers.

Note that adding two n bit numbers can always be done in time O(n) by a
straightforward algorithm. For multiplication and division this is more compli-
cated. As a detailed discussion would be beyond the scope of this work, we only
state the existence of an algorithm whose running time is less than the trivial
time bound of O(n2).

Fact 0.7 (Schönhauser, Strassen). On a random access machine two n-bit
numbers can be multiplied in time O(n · log n). Integer division can be carried out
within a constant factor of multiplication.

A discussion of this can be found, for example, in [Knu81].

We will refer to the time needed to multiply two n-bit numbers as tmul(n). Im-
plicitly, this time will be always assumed to equal the term from fact 0.7.

13
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Chapter 1.

Vertex Cover

The parameterized decision problem p-VertexCover is known to admit a wide
range of kernelizations. In this chapter we will study three important techniques,
to wit, the Buss Kernelization the Crown Rule Reduction and the Linear Pro-
gramming method, and the way of applying them to counting vertex covers.

In most cases kernelization techniques are combined with fast fpt algorithms for
solving a given problem. This helps in improving the time bounds further. Here,
we will introduce such an algorithm for p-#VertexCover which we will use
later on to combine it with several kernelization techniques.

Algorithm 1 is an adaptation of the CountGHS algorithm given in [FG06]. Since
it will play an important part in this chapter, we provide a bound on the running
time of this algorithm.

Let #vc(G, k) denote the number of size k vertex covers in a graph G = (V,E).

CountVC(G, k, F ) // G a graph, k ∈ N, F ⊆ V
if k > |V \ F | then return 0;1

else if E = ∅ then return
(|V \F |

k

)
;2

else3

choose e ∈ E;4

h← 0 ;5

forall S0 ⊆ e \ F with 0 < |S0| ≤ k do6

V ′ ← V \ S0 ;7

E′ ← {e ∈ E|e ⊆ V ′};8

G′ ← (V ′, E′);9

F ′ ← F ∪ (e \ S0);10

k′ ← k − |S0| ;11

h← h+ CountVC(G′, k′, F ′);12

end13

return h;14

end15

Algorithm 1: Counting vertex covers

Theorem 1.1. Given a graph G = (V,E) and k ∈ N. The algorithm CountVC
solves p-#VertexCover in time O((1 +

√
3)k · ‖G‖)
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Chapter 1. Vertex Cover

Proof. Note that, CountVC is a trivial p-#VertexCover adaptation of the
algorithm CountGHS given in [FG06]. This implies the correctness of the algo-
rithm.

We tighten the running time analysis. Let ‖G‖ = n and let T (k, n) denote the
maximum running time of CountVC(G, k, ∅). Then, we have:

T (0, n) = O(1)
T (1, n) = 2 · T (0, n) +O(n)
T (k, n) = T (k − 2, n) + 2 · T (k − 1, n) +O(n)

for k > 1, n ∈ N.

Let c be a constant large enough such that the terms O(1) and O(n) above are
bounded by c and c · n, respectively.

By induction on k, we show that T (k, n) ≤ c · (1 +
√

3)k · n. For k = 0 this is
trivial. For k = 1 we have T (1, n) = 2 · T (0, n) +O(n) ≤ 2cn.
Now, let k > 1 and define b := (1 +

√
3) then

T (k, n) ≤ T (k − 2, n) + 2 · T (k − 1, n) +O(n)
≤ (bk−2 + 2bk−1 + 1) · cn
≤ bk−2 · (4 + 2

√
3) · cn

= bk−2+logb(4+2
√

3) · cn = bk · cn
¤

1.1. Applying Buss’ Kernelization to p-#VertexCover

A simple but powerful kernelization of p-VertexCover is known as Buss’ Ker-
nelization. Among the kernelizations for this problem this one is the simplest but
least efficient. However, as far as p-#VertexCover is concerned, we will see
that its efficiency is much better than that of the other approaches.

The main idea behind Buss’ kernelization is expressed in the following lemma.

Lemma 1.2. Let G = (V,E) be a graph and k ∈ N then:

1. Any v ∈ V with d(v) > k is contained in every k-element vertex cover of G.
2. If ∆(G) ≤ k and G has a k-element vertex cover, then |E| ≤ k2.

The proof is immediate, therefore we omit it. Algorithm 2 shows how to apply
this lemma to counting vertex covers. Here, G0 = ({a, b}, {{a, b}}) is the graph
that consist of exactly one edge and G1 = ({a}, ∅) . Hence #vc(G0, 0) = 0 and
#vc(G1, 0) = 1.

Theorem 1.3. Given a graph G = (V,E) and k ∈ N.
The algorithm CountBussVC correctly solves p-#VertexCover on G. With
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1.1. Applying Buss’ Kernelization to p-#VertexCover

CountBussVC(G, k) // G = (V,E) a graph, k ∈ N
V ′ ← V ; E′ ← E;1

k′ ← k; G′ ← (V ′, E′);2

while there is a v ∈ V ′ with dG′(v) > k′ do3

E′ ← E′ \ {e ∈ E | ∃ w ∈ V ′ : e = {v, w}};4

V ′ ← V ′ \ {v}; G′ ← (V ′, E′);5

k′ ← k′ − 1;6

end7

if k′ = 0 and E′ = ∅ then G′ = (V ′, E′)← G1;8

if k′ ≤ 0 or |E′| > (k′)2 or |V ′| < k′ then9

// i.e. #vc(G′, k′) = 0
G′ = (V ′, E′)← G0;10

k′ ← 0 ;11

end12

I ← {v ∈ V ′ | dG′(v) = 0};13

V ′ ← V ′ \ I;14

return
∑k′

i=0CountVC(G′, i, ∅) ·
( |I|
k′−i

)
;15

Algorithm 2: Counting Vertex Covers via Buss’ Kernelization

a uniform cost measure this takes time

O((1 +
√

3)kk2 + k · ‖G‖)

Proof. Call lines 1-14 the kernelization phase of the algorithm. To see the cor-
rectness of the algorithm, consider k ∈ N and G = (V,E). Furthermore, let v ∈ V
be a vertex with d(v) > k and define the graph G∗ = (V \ {v}, E∗) with E∗ :=
E \ { {v, u} ∈ E |u ∈ V }. Lemma 1.2 implies that #vc(G, k) = #vc(G∗, k − 1).
Thus, the kernelization phase is correct.

For the remainder of the algorithm, consider the reduced graph G′ = (V ′, E′) and
k′ ∈ N. Note that for G′ ∈ {G0,G1} with k′ = 0 the last line of the algorithm
is correct. Hence assume that V ′ 6= ∅ and E′ 6= ∅ . Note that G′ may contain
isolated vertices, which may be contained in a vertex cover of size k′. Let I be
the set of these isolated vertices and consider them as deleted from V ′. Thus any
size k′ vertex cover C in G′ satisfies |V ′ ∩ C| = i ∈ [k′] and |I ∩ C| = k′ − i. As
I and V ′ are disjoint, this implies, that the union of any size i vertex cover of G′
and any subset A ⊆ I with |A| = k′ − i yields a size k′ vertex cover. This shows
that the computation carried out in the last line of the algorithm is correct.

Time Complexity. The kernelization phase of the algorithm can be carried out
in time O(k · ‖G‖). To see this, note that the while-loop is repeated at most k
times and each iteration can be carried out in linear time. Furthermore, the other
operations in the kernelization phase do not increase this bound.

The last line of the algorithm induces at most k + 1 additions in the sum. For
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Chapter 1. Vertex Cover

the reduced graph G′ = (V ′, E′) lemma 1.2 implies that |E′| ≤ k2 and |V ′| ≤ 2k2.
Hence, the call CountVC(G′, i, ∅) completes in time c · bi2k2 with b = (1 +

√
3)

and an appropriate constant c.

Note that, by the definition of the binomial coefficient, computing
( |I|
k′−i

)
takes at

most O(k) many steps which involve k′ − i multiplications, k′ − i divisions and
2(k − i+ 1) subtractions. We simply assume that this takes time c · k.
Thus, evaluating

∑k′
i=0CountVC(G′, i, ∅) · ( |I|

k′−i

)
takes time

k +
k∑

i=0

(c · bi2k2 + c · k) ≤ k + c · k2 + c · 2k2 ·
k∑

i=0

bi

≤ k + c · k2 + c · 2k2 · b
k+1 − 1
b− 1

= k + c · k2 + c · 2k2 · b
k+1 − 1√

3
∈ O(k2bk)

Accordingly, the whole algorithm completes in time O((1 +
√

3)kk2 + k · ‖G‖), as
claimed. ¤

1.1.1. Logarithmic Cost Measure

The time bound given in theorem 1.3 suggests that the time spent in the compu-
tation on the reduced instance does not depend on the size of the original graph
G anymore. In kernelizations of decision problems this is always the case. But we
will see now that the situation changes if we consider the arithmetic computations
involved in the CountBussVC algorithm under the logarithmic cost measure.
Note first that the running time of the CountVC algorithm does not change
under the LCM.

Observation. Under the logarithmic cost measure p-#VertexCover can be solved
by CountVC in time O((1 +

√
3)k‖G‖).

This is due to the fact that in a graph G = (V,E) with n = |V | there can be at
most nk vertex covers of size k. Therefore, the numbers summed in the algorithm
are of size at most k log n. And as addition takes linear time, the LCM does not
change the estimate.

Lemma 1.4. With a logarithmic cost measure the algorithm CountBussVC
solves p-#VertexCover in time

O(k · ‖G‖+ k2(1 +
√

3)k + k3 log n · (log k + log log n)).

Proof. Let |V | = n. Define tadd(x) as the time needed to add two x bit numbers.
Let c be a constant larger than the constants hidden in tadd and the time bound
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1.1. Applying Buss’ Kernelization to p-#VertexCover

of CountVC. That is, we assume that tadd(x) ≤ c · x and CountVC completes
in time c · bi‖G‖ with b = (1 +

√
3).

We reconsider algorithm 2 with a logarithmic cost measure. Note that the time
bounds for the computations do not change, except for the last line of the algo-
rithm.

First, we determine the time to compute the binomial coefficient:
( |I|
k′ − i

)
=
|I| · . . . · (|I| − k′ − i+ 1)
(k′ − i) · (k′ − i− 1) . . . · 2 .

We have to perform k′ − i multiplications, k′ − i divisions and 2(k′ − i + 1)
subtractions. Hence, by the fact that division is within a constant factor of
multiplication (see fact 0.7), we may assume that at most 2k multiplications and
2k additions are performed.

As |I| can be represented by a logn bit number, the largest numbers multiplied
have a size of at most k logn bits and the numbers involved in subtractions have
size at most logn bits. Thus, the binomial coefficient can be computed in time
at most

2k · tadd(logn) + 2k · tmul(k logn).

Note that for the reduced graph G′ = (V ′, E′) we have |V ′| ≤ 2k2 and |E′| ≤ k2.
Thus, by observation 1 the time spent in CountVC(G′, i, ∅) is at most O(bi · k2)
with b = (1 +

√
3). And as G′ may contain at most (2k2)i vertex covers of size i,

the number returned is of size at most 2i · log 2k ≤ k logn. Thus the time needed
to multiply CountVC(G′, i, ∅) and

( |I|
k′−i

)
is at most tmul(k log n).

Altogether, the ith term of the sum in the last line of the algorithm can be
computed in time at most

tmul(k logn) + c · bi · k2 + 2k · tadd(log n) + 2k · tmul(k log n)

For the whole last line we have to reckon the addition of the k+1 different terms
of the sum, of which each has size at most k · logn. Let c′ be a constant large
enough to bound all of the constants given above, then we have:

c′ · k · tadd(k · log n) +
k∑

i=0

c′ · bi · k2 + c′ · k · tadd(logn) + c′ · k · tmul(k logn)

Therefore, we may simply omit c′ and we obtain:

k · (tadd(k · log n) + k · tadd(logn) + k · tmul(k logn)) + k2
k∑

i=0

bi

= k · (k · logn+ k · log n+ k · tmul(k logn)) + k2
k∑

i=0

bi

∈ O(k2 · logn+ k2 · tmul(k log n) + k2 · bk)
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Chapter 1. Vertex Cover

As the kernelization phase takes still O(k · ‖G‖), the time bound for the whole
algorithm is:

O(k · ‖G‖+ k2bk + k2 log n+ k2 · tmul(k logn)) ¤

The time bound just derived shows that even in the computations on the reduced
graph G′ the time still depends on the original input graph G. Fortunately, this
dependence does not show in the part k2bk of the time bound that is exponential
in k. Thus for the algorithm at hand, the application of the logarithmic cost
measure does not change much in comparison to the UCM. However, in the next
chapter we will see that this is not always the case.

1.2. Crown Rule Reduction

One of the most efficient kernelization techniques known in parameterized algo-
rithm design is the application of the so-called Crown Rule Reduction.

Definition 1.5. Let G = (V,E) be a graph. A crown in G is a bipartite subgraph
C = (I,N(I), F ) of G satisfying three conditions:

(1) I is an independent set in G and N(I) is the set of all neighbors of vertices
from I in G.

(2) F contains all edges from E that connect vertices in N(I) to vertices in I.

(3) C has a matching of cardinality |N(I)|.

Let vc(G) denote the minimum size of a vertex cover in G.
Let G = (V,E) be a graph. A matching in G is a set M ⊆ E of pairwise disjoint
edges. A vertex v ∈ V is free with respect to M if it is not incident with an
edge in M . We say that M is maximal if there is no matching M ′ in G such that
M ⊂ M ′. The matching M is maximum if there is no matching M ′ in G with
|M | < |M ′|. An M -alternating path in G is a path whose edges alternately belong
to M and E \M .

The possibility of computing a crown efficiently is tighly connected to the following
two facts. Their proof can be found, for example, in [FG06].

Lemma 1.6. (1) A maximal matching in a given graph can be computed in
linear time.

(2) Given a bipartite graph B and k ∈ N. There is an algorithm that decides the
existence of a size k matching in B in time O(k · ‖B‖). If there exists such
a matching then the algorithm computes it within the same time bounds.

Let G = (V,E) be a graph and k ∈ N. We will follow an algorithm given in [FG06]
that constructs a crown in G. For the time being, let us assume, that G contains
no isolated vertices. The case of isolated vertices will be considered later. After
we have seen the construction, we will show how to use the special structure
of a crown in a counting algorithm. In order to do this it will be convenient
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1.2. Crown Rule Reduction

to explicitly refer to the different exit conditions of the construction algorithm.
Therefore, we denote them by (E1), (E2), . . ..

First, compute a maximal matching L of G. If |L| > k then vc(G) > k and thus
the algorithm returns zero. (E1)

Assume that |L| ≤ k and let I be the set of all vertices that are free with re-
spect to L. By the maximality of L, I is an independent set. If |I| ≤ k then
|V | = 2 · |L|+ |I| ≤ 3k. That is, G itself is a ”kernel” and we call CountVC(G, k)
(see algorithm 1) to solve the problem. (E2)

In the following assume |I| > k. We will see now how to construct a crown C in G
on at least |V |−3k vertices. Let B = (I,N(I), F ) be the bipartite graph such that
F contains all edges from G that connect vertices in N(I) to vertices in I. Then
a maximum matching M is constructed in B. If |M | > k then vc(G) ≥ |M | > k
and the algorithm returns zero. (E3)

If |M | ≤ k and |M | = |N(I)| then B is the crown sought, as B contains at least
|V | − 2|L| ≥ |V | − 2k vertices. (E4)

Otherwise, if |M | ≤ k and |M | < |N(I)| then denote by J the set of all vertices in
I that are free with respect to M . As |I| > k the set J is nonempty. Let C be the
set of all vertices of B that can be reached from a vertex in J by an M -alternating
path and define C as the induced subgraph of B with vertex sets I ′ := I ∩ C and
N(I ′).
Let M ′ be the restriction of M to the edges in C. The following claim is proven
in [FG06]. So we omit the proof here.

Claim 1. C is a crown with |I ′ ∪N(I ′)| ≥ |V | − 3k + 2|M ′|

By this fact, we know that the number of vertices in G that do not belong to C is
at most 3k and therefore C is a crown, as desired. (E5)

In the cases where a crown is constructed ((E4) and (E5)) let this crown be
C = (I,N(I), F ). We will show now how to obtain a graph whose size is bounded
by a function of k and that is appropriate for counting.

Applying a crown in a counting algorithm. Recall that |N(I)| < k. Note
furthermore that with respect to the edges in G (and hence in C as well), all
vertices in I have neighbors only in N(I). Therefore, we can define an equivalency
relation with at most 2k equivalency classes by defining for all v, w ∈ I:

v ∼ w :⇔ N(v) = N(w) (1.1)

Furthermore, for every v ∈ I define [v] as the equivalency class of v, that is
[v] := {w ∈ I | v ∼ w}.
Claim 2. Given a vertex cover S of C such that there is a vertex y ∈ N(I) \ S.
Let v ∈ I be a vertex with y ∈ N(v), then [v] ⊆ S.

Proof. Assume that there is a w ∈ [v] with w /∈ S. Then, by the definition of [v]
there is an uncovered edge {y, w} in C. Contradiction. √
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Chapter 1. Vertex Cover

This claim opens up a possibility to count the vertex covers in a graph by exploit-
ing the existence of a large crown.

Let G \ C be the graph obtained from G by deleting all vertices in C and all edges
incident to vertices in C.
Let S be a vertex cover of C and let G′ be the graph obtained from G \ C by
deleting all edges covered by vertices in S. One can easily see that the number
#vc(G′, k− |S|) equals the number of size k vertex covers in G that are supersets
of S.

As the size of G′ depends only on k, #vc(G′, k − |S|) can be computed by
CountVC in time depending only on k. Therefore, to show how to compute
the number of size k vertex covers in G it remains to show, how to enumerate the
vertex covers of C.
Fix a set S ⊆ N(I). Claim 2 entails a way of constructing a set L ⊆ I such that
S ∪ L is a minimal (with respect to inclusion) vertex cover of C. Let

A(S) := {[v] | v ∈ I, ∃ y ∈ N(I) \ S such that y ∈ N(v)}.

and define
L(S) :=

⋃

[v]∈A(S)

[v] (1.2)

Intuitively, A is the (unique) minimal family of equivalency classes that is nec-
essary such that S ∪ L(S) is a vertex cover in C. Thus we only need to see how
to generate all vertex covers of size k including those that are not necessarily
minimal as in the above sense.

Let R ⊆ I \ L(S) (R1) be a set of vertices with |R| ≤ k − |S ∪ L(S)| (R2). It is
easy to see that for every set R satisfying these conditions the set R ∪ S ∪ L(S)
is a vertex cover of C of size at most k. Hence, we can find all vertex covers of
C of cardinality at most k by enumerating all sets S ⊆ N(I), and forming the
corresponding set L(S) according to equation (1.2). Then, if |S ∪ L(S)| ≤ k it
suffices to compute the number of sets R satisfying conditions (R1) and (R2).

These considerations form the main building block of algorithm 3 which computes
the number of size k vertex covers of G with a crown C present. Noteworthily,
for each set S ⊆ N(I) the set L(S) is computed. Then the number of sets R
satisfying (R1) and (R2) is accommodated in the for-loop below line 10. This
entails the correctness of the algorithm.

Theorem 1.7. Given a graph G = (V,E), k ∈ N and a crown C = (I,N(I), F )
in G as defined above, such that C contains at least |V | − 3k vertices. Then the
algorithm CountCrownVC (algorithm 3) correctly computes the number of size
k vertex covers in G in time

O(k · ‖G‖+ (2 + 2
√

3)k · k3)

Furthermore, if G contains isolated vertices, this case can be handled without time
overhead.
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1.2. Crown Rule Reduction

CountCrownVC(G, k, C)
// G = (V,E) a graph, k ∈ N and
// a crown C = (I,N(I), F ) on at least |V | − 3k vertices
c← 0;1

Let A be the set of all equivalency classes defined by equation (1.1) ;2

forall y ∈ N(I) do compute Ly ← { [v] | y ∈ N(v)};3

forall [v] ∈ A do compute |[v]| ;4

forall X ⊆ N(I) do5

compute L =
⋃

y∈N(I)\X Ly;6

G′ ← the graph G \ C with all edges covered by X deleted;7

r ←∑
[v]∈L |[v]|;8

k′ ← k − |X| − r;9

if k′ ≥ 0 then10

for i← 0 to k′ do11

c← c+
(|I|−r

i

) · CountV C(G′, k′ − i) ;12

end13

end14

end15

return c;16

Algorithm 3: Counting Vertex Covers using a Crown

Proof. The correctness of the algorithm follows directly from the considerations
above.

For the time complexity of the algorithm, note that each equivalency class [v]
can be described by a string av ∈ {0, 1}k. Computing these strings takes at most
|I| · k steps. The sets Ly can be generated in at most |N(I)| · |I| ≤ k · |I| steps.

Furthermore, computing the values |[v]| can be done in time O(k · |I|)as follows:

In a single pass through the vertices in I all equivalency classes that contain at
least one vertex from I can be determined by analyzing the strings av for all v ∈ I.
Thus there are at most |I| nonempty equivalency classes. For each of these classes
a counter is initialized to zero. Then, in another pass through I, for each v ∈ I
the string av is taken to increase the counter for the corresponding equivalency
class. After this the counter values contain the sizes of the equivalency classes.
Thus, the operations up to line 4 can be carried out in time O(k · |I|).
Now, consider one of the at most 2k iterations of the for-loop beginning in line 5.
Note that L can be computed in time 2k · k and if we keep a fixed copy of G \ C
we can compute G′ in k2 steps. Observe that if |X|+ |L| > k we can simply skip
to he next iteration as no solution can be found in this case. Thus, computing
r and k′ together takes at most k steps. Furthermore, recall that computing the
binomial coefficient can be done in time O(k). Hence, the inner for-loop takes
time at most O(k + k2 + k3 · (1 +

√
3)k) ≤ O(k3 · (1 +

√
3)k).

For the big for-loop, this implies time O(2k · (2kk + k3 · (1 +
√

3)k)). Thus, the
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whole algorithm completes in time

O(‖G‖+ k · |I|+ 2k(2k · k + (1 +
√

3)k · k3)) ≤ O(k · ‖G‖+ (2 + 2
√

3)k · k3).

For the case of isolated vertices, note that, if U is the set of all isolated vertices
then the value |U | can be reckoned in the for-loop below line 10. Clearly, the
increase in running time is swallowed by the ”big Oh” notation. ¤

Corollary 1.8. Let G = (V,E) be a graph and k ∈ N. In applying the Crown
Rule Reduction as described above, p-#VertexCover can be solved in time

O(k · ‖G‖+ (2 + 2
√

3)k · k3)

Proof. Note that the construction of a crown can be carried out in time O(k ·‖G‖).
Thus we only have to check the exit conditions (E1) - (E5).

Note that in conditions (E4) and (E5) the time bound from theorem 1.7 above
applies, as in these cases a crown is constructed. Furthermore, in cases (E1) and
(E3) no additional time is spent as the algorithm returns zero. In the case that
the algorithm returns in (E2) the graph returned contains at most 3k vertices.
Thus solving this instance with CountVC does not exceed the running time from
theorem 1.7. Hence, the time bound follows. ¤

1.3. Linear Programming

For the decision problem p-VertexCover a kernel is known that is even smaller
that the one obtained by the crown rule reduction. The main idea underlying the
construction of this kernel is the application of linear programming techniques.

We will show now how to apply this technique to p-#VertexCover which in
turn will reveal that its efficiency in counting is comparable to that of the crown
rule.

Note that a linear program is a system of linear inequalities together with some
linear objective function. As an example we show how to define a linear program
for the vertex cover problem.

For a graph G = (V,E) we define the linear program L(G) as follows:

minimize
∑

v∈V subject to
xv + xw ≥ 1 ∀{v, w} ∈ E

xv ≥ 0 ∀v ∈ V
xv ≤ 1 ∀v ∈ V

It is not hard to see that integral solutions of L(G) correspond to vertex covers
of G. Call a solution (xv)v∈V ∈ R|V | of L(G) half-integral if xv ∈ {0, 1

2 , 1} holds
for all v ∈ V .

The possibility to apply linear programming techniques to kernelization arises
from the following fact which we state without proof.
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Fact 1.9. There is a polynomial time algorithm that computes an optimal solu-
tion for a given linear program with rational coefficients.

The information necessary for computing a kernel for the p-VertexCover prob-
lem is provided by the following two lemmas. Proofs of these can be found, for
example, in [FG06]. The latter of which is known as the Nemhauser-Trotter
theorem.

Lemma 1.10. Given a graph G = (V,E). Then L(G) has an optimal half-integral
solution that can be computed in polynomial time.

Lemma 1.11. Let G = (V,E) be a graph and (xv)v∈V an optimal half-integral
solution of L(G). Define Vr := {v ∈ V |xv = r} for r ∈ {0, 1

2 , 1} and let Gr be the
induced subgraph of G with vertex set Vr. Then

(1) vc(G 1
2
) ≥ |V 1

2
|/2

(2) vc(G 1
2
) = vc(G)− |V1|

By these two facts, we can show how to apply the linear programming technique
to counting.

Theorem 1.12. Let G = (V,E) be a graph and k ∈ N. Then applying the above
mentioned linear programming method, p-#VertexCover can be solved in time

O(‖G‖c + (2 + 2
√

3)k · k3)

where c is a constant.

Proof. First we compute L(G) and an optimal half-integral solution (xv)v∈V of
L(G). Let I be the set of isolated vertices of G. By the optimality of (xv)v∈V ,
we know that I ⊆ V0. Thus define V ′0 := V0 \ I and let D = (V ′0 , V1, F ) be
the bipartite graph that contains all the edges between V ′0 and V1 in G. These
computations account for the term ‖G‖c in the statement of the theorem, as they
can be carried out in polynomial time.

Note that D is not necessarily a crown, but all vertices in V ′0 have neighbors only
in V1 and |V1| ≤ k.
Furthermore, observe that in for the algorithm CountCrownVC it is not essen-
tial that the second graph C = (I,N(I), F ) in the input is a crown. That is, it
is not necessary that the graph C has a perfect matching of cardinality |I|. As
the graph D obviously satisfies all conditions for being a crown but not neces-
sarily the perfect matching condition, the instance (G,D, k) is a valid input of
CountCrownVC. Hence, the time bound derives from this algorithm. ¤

1.4. A Note on the Crown Rule Reduction

The time bounds we have given for applying the Crown Rule and Linear Pro-
gramming to p-#VertexCover are surprisingly high. When comparing these
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results with the decision problem these techniques were originally designed for
this seems even more unfortunate. However, a closer look on the structure of
these techniques reveals some details that might help interpreting these results.

In contrast to the Buss Kernelization these techniques consider minimum vertex
covers, that is, vertex covers of the least possible cardinality. For p-VertexCover
this entails no problem, as every minimum vertex cover can easily be extend to a
size k vertex cover as long as the graph given contains at least k vertices. How-
ever, in solving p-#VertexCover we cannot restrict our attention to minimum
vertex covers and hence this optimality criterion cannot be exploited.

Conversely, it is easy to see that a refinement of the definition of p-#VertexCover
to counting optimal solutions of size at most k would prove the Crown Rule and
Linear Programming more efficient than the Buss kernelization again. We might
define this problem in the following way:

p-#MinimumVertexCover

Instance: A graph G = (V,E) and k ∈ N
Parameter: k
Problem: Compute the number of minimum vertex covers of cardinality

at most k in G

It is easy to see that, for example, the Crown Rule is more efficient when applied
to this problem than in application to p-#VertexCover. This is due to the
fact that for an instance (G, k), once the crown C = (I,N(I), F ) is computed,
it suffices to consider the graph G′ := G \ C, as every minium vertex cover S of
G satisfies S ∩ I = ∅ and N(I) ⊂ S. Then, by the construction of the crown,
the graph G′ = (V ′, E′) satisfies |V ′| ≤ 3k and hence ‖G‖ is bounded by some
function of k.

Moreover, for p-#MinimumVertexCover these considerations reveal the sur-
prising fact that it is parametrically restricted in the sense that the number of
solutions it admits is bounded by some function of k.

Apart from p-VertexCover, the crown rule reduction has been applied to a
variety of parameterized decision problems. For example in [MPS04] an appli-
cation to the p-DisjointTriangle problem has been shown. For the so-called
p-SetSplitting problem, kernelizations using Crown Rule reductions can be
found in [LS05] and [DFRS04]. For definitions of these problems we refer the
reader to the literature.

Unfortunately, a closer look on the algorithms solving these problems reveals that
they are not applicable in counting problems. A detailed discussion of this fact
is beyond our focus, therefore we will give only a short clue about the reason for
this. In the papers mentioned, all the algorithms applying the Crown Rule stop
whenever it is clear that there is at least one solution. In counting problems these
cases have to be treated differently. This implies that new techniques have to be
developed to address these cases. But it might even turn out that - apart from
p-#VertexCover - the Crown Rule is not applicable to any counting problem.

26



Chapter 2.

Exploring #FPT

In this chapter we will examine further parameterized counting problems. It will
be shown how kernelization techniques can be applied to find fpt algorithms for
these problems. Many of these will exhibit a strong connection to vertex cover
which in turn can be used to develop simple fpt algorithms. Other problems that
are less correlated to vertex cover will require more effort.

To illustrate the strong connections between vertex cover and certain counting
problems it will be convenient to have a notion of ”parameterized counting re-
duction”.

Definition 2.1. Let (F, κ) and (G,λ) be parameterized counting problems over
the alphabets Σ and Γ, respectively.

An fpt parsimonious reduction from (F, κ) to (G,λ) is a mapping R : Σ∗ → Γ∗

satisfying:

a) For all x ∈ Σ∗ we have F (x) = G(R(x)).

b) R is computable by an fpt algorithm (with respect to κ).

c) There is a computable function g : N→ N such that λ(R(x)) ≤ g(κ(x)) for
all x ∈ Σ∗.

For parameterized counting problems (F, κ) and (G,λ) we write (F, κ) ≤fpt (G,λ)
if there is an fpt parsimonious reduction from (F, κ) to (G,λ).

We will begin with generalizations of the vertex cover problem to hypergraphs.
As hypergraph analogs of vertex cover there are two notions that come to mind.
First, one might look for sets C of vertices such that each hyperedge has a most
one vertex not in C. This is known as the cover problem. Secondly, one might
look for sets of vertices that contain at least one vertex in common with every
hyperedge. This is the hitting set problem.

2.1. p-#Cover

Formally, a cover in a hypergraph H = (V,E) is a set X ⊆ V such that
∀ e ∈ E : |e \X| ≤ 1. Hence, we can define the following parameterized problem
of counting covers:
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p-#Cover

Instance: A hypergraph H = (V,E) and k ∈ N
Parameter: k
Problem: Compute the number of covers of cardinality k in H.

Via the concept of the Gaifman graph, solving this problem is easily seen to be
tightly connected to solving p-#VertexCover. Given a hypergraph H = (V,E)
the Gaifman graph of H is defined as GH := (V,E∗) with

E∗ = { {u, v} | ex. e ∈ E : {u, v} ⊆ e}

Lemma 2.2. There is a polynomial time algorithm that witnesses

p-#Cover ≤fpt p-#VertexCover

Proof. Let (H, k) with H = (V,E) be an instance of p-#Cover. Let G = (V,E∗)
be the Gaifman graph of H.

Claim 1. Let X ⊆ V . X is a cover in H iff X is a vertex cover in G.

Proof. Let X be a cover in H and f ∈ E∗ an edge in G. By definition of G there
is a hyperedge e ∈ E s.t. f ⊆ e and as X is a cover we have |e \ X| ≤ 1 thus
|f \X| ≤ 1. That is, f is covered by X and X is a vertex cover.
For the backward direction, let X be a vertex cover of G. Note that any hyperedge
e with |e| > 1 in H is represented by a size |e| clique K in G. As K = (K,K ×K)
is covered by X, we have |K \X| ≤ 1, because otherwise there would be u, v ∈ K
such that {u, v} ⊆ K \X in contradiction to X being a vertex cover. Therefore,
X is a cover in H. √

Claim 1 shows that the number of size k covers in H equals the number of size
k vertex covers in G. Note that, unless there is no cover in H, the cardinality of
the hyperedges is bounded by k + 1. Thus, we can transform H into G in time
O(|V |+ k2|E|) ¤

Corollary 2.3. Given a hypergraph H = (V,E) and k ∈ N.
With a uniform cost measure p-#Cover can be solved in time

O((1 +
√

3)kk2 + |V |+ k2 · |E|)

Proof. Given (H, k) an instance of p-#Cover with H = (V,E). Let |V | = n
and |E| = m. If there is an e ∈ E with |e| ≥ k + 2 return 0. Otherwise, we
compute the Gaifman graph G = (V,E∗) of H according to lemma 2.2. By the
construction of G we have |E| ≤ k2 ·m and by lemma 1.3 p-#VertexCover on
G can be solved in time O((1 +

√
3)kk2 + k + n+ k2 ·m). ¤
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2.2. p-card-#HittingSet

Let us consider the second of the above mentioned generalizations of vertex
cover.

Definition 2.4. A hitting set in a hypergraph H = (V,E) is a set S ⊆ V such
that S ∩ e 6= ∅ for all e ∈ E.

Contrarily to the problems discussed so far, no fpt algorithm is known for the
hitting set problem when parameterized only by the cardinality of the hitting
sets sought. Indeed, for both the decision and counting problem, there is strong
evidence that there is no such algorithm. Therefore, different parameterizations
are considered. One straightforward parameterization assumes the hyperedges to
be of a small cardinality and hence includes this value into the parameter. This
version of the counting problem looks as follows:

p-card-#HittingSet

Instance: A hypergraph H = (V,E) and k ∈ N
Parameter: k + d with d := maxe∈E |e|
Problem: Compute the number of hitting sets of cardinality k in H

Note that the convention to include several parameter values into one parameter
by summation (as above for k+d) was introduced only for simplicity (cf. [FG06]).
Intuitively, however, we may assume that this problem has two parameters. We
define #hs(H, k) to denote the number of hitting sets of size k in the hypergraph
H.

One element of the algorithm that solves this problem with kernelization tech-
niques is an fpt algorithm which will be combined with the kernelization. We cite
its existence without proof.

Theorem 2.5 (Theorem 14.3 from [FG06]).
p-card-#HittingSet is fixed parameter tractable. More precisely, there is an
algorithm solving p-card-#HittingSet in time

O(d2k · ‖H‖).

The pseudocode of the algorithm is presented in algorithm 4.

The kernelization of the decision problem p-card-HittingSet given in [FG06]
utilizes the well known sunflower lemma. It is a little bit more complicated
than the Buss kernelization of vertex cover but intuitively, one can view it as a
generalization of Buss’ idea. We will see that it can be applied to the counting
problem without alteration.

Given a hypergraph H = (V, F ). A sunflower in H is a family S = {S1, . . . , Sk} ⊆
F of hyperedges such that there is a set C ⊆ V satisfying

Si ∩ Sj = C for all 1 ≤ i < j ≤ k (2.1)
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CountGHS(H, k, F ) // H a hypergraph, k ∈ N, F ⊆ V
if k > |V \ F | then return 0;1

else if E = ∅ then return
(|V \F |

k

)
;2

else3

choose e ∈ E;4

h← 0 ;5

forall S0 ⊆ e \ F with 0 < |S0| ≤ k do6

V ′ ← V \ S0 ;7

E′ ← {e ∈ E|e ⊆ V ′};8

H′ ← (V ′, E′);9

F ′ ← F ∪ (e \ S0);10

k′ ← k − |S0| ;11

h← h+ CountGHS(H′, k′, F ′);12

end13

return h;14

end15

Algorithm 4: Counting generalized hitting sets

C is the core of the sunflower S and for all i ∈ [k] the set Si \ C is called a petal
if it is nonempty.

Lemma 2.6 (Sunflower Lemma). Let k, d ∈ N and be H = (V, F ) a d-uniform
hypergraph with more than (k − 1)d · d! hyperedges. Then there is a sunflower S
of cardinality k in H.

Proof. We prove this by induction on d. For d = 1 each collection of k distinct
1-element hyperedges clearly forms a sunflower with empty core. For d > 1 let
D = {f1, . . . , fm} ⊆ F be a maximal family of pairwise disjoint hyperedges. If
|D| ≥ k, then D is a sunflower, as desired. Otherwise, let W := f1 ∪ . . . ∪ fm.
Then |W | ≤ (k − 1) · d and by the maximality of D, every hyperedge f ∈ F
satisfies W ∩ f 6= ∅. Thus there is an element x ∈W contained in at least

|F |
|W | ≥

(k − 1)d · d!
(k − 1)d

= (k − 1)d−1 · (d− 1)!

hyperedges in F . For such an x ∈W let Fx := {f \ {x} | f ∈ F ∧ x ∈ f}. Then,
by the induction hypothesis, Fx contains a sunflower {f ′1, . . . , f ′k} of cardinality k
and thus {f ′1 ∪ {x}, . . . , f ′k ∪ {x}} is a sunflower in H. ¤

Corollary 2.7. There is an algorithm that computes a sunflower S according to
the sunflower lemma in time O(d‖H‖).

Proof. The proof of the sunflower lemma can be turned into an algorithm (see
algorithm 5) that computes sunflowers. Its correctness follows directly from the
sunflower lemma.

30



2.2. p-card-#HittingSet

We prove the time bound. Note that the familyD and the setW can be computed
by greedily searching all hyperedges in a fixed order. For each v ∈ V a flag is
maintained indicating whether v is contained in a hyperedge in D. Then for
every edge e ∈ F we can decide in time O(d) whether e can be added to D. As
initializing the array of flags takes |V | steps and the set W can be computed by
a single pass through the array, the first three lines of the algorithm take time
O(|V |+ d|F |).
Obviously, checking the cardinality of D does not increase this time bound. Find-
ing w ∈ W as in line 5 can be done within the same time bound by keeping a
counter for each vertex in V . In a single pass through all hyperedges the counters
for a v ∈ V are increased everytime v occurs. Then all counters of vertices not in
W are set to zero and in a second pass a vertex with a highest counter value is
chosen. This can be done in time at most O(|V |+ d|F |).
Similarly, F ′ and V ′ can be computed within the same time bound and as the
cardinality of S is at most |F | the family S′ can be computed in at most d · |F |
steps.

This yields a time bound of O(|V |+d|F |) for one recursive call, and via a straight-
forward inductive argument one can see that the overall algorithm takes time
O(d·(|V |+d|F |)) which, by the definition of ‖H‖ is identical to the time claimed.¤

FindSunflower(H, k)
// H = (V, F ) a d-uniform hypergraph, k ∈ N
Output: a pair (S,C) where S is a sunflower and C its core
if |F | ≤ (k − 1)d · d! then return (∅, ∅);1

Greedily find a maximal family D ⊆ F of pairwise disjoint hyperedges;2

W ← ⋃
A∈D A;3

if |D| > k then return D;4

Pick a w ∈W that occurs in a maximum number of hyperedges;5

F ′ ← {e \ {w} |e ∈ F,w ∈ e} ;6

V ′ ← ⋃
e∈F e ;7

(S,C)← FindSunflower((V ′, F ′), k);8

S′ ← {e ∪ {w} | e ∈ S};9

return (S′, C ∪ {w});10

Algorithm 5: Finding sunflowers in a hypergraph

The algorithm FindSunflower for finding sunflowers and the algorithm Count-
GHS are now combined to form the kernelization algorithm CountSunflow-
erHS.

Theorem 2.8. Given a hypergraph H = (V,E), d := maxe∈E |e| and k ∈ N.
The algorithm CountSunflowerHS solves p-card-#HittingSet on H in time

O(d2 · |E| · ‖H‖+ kd · d! · d2k+2)
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CountSunflowerHS(H, k) // H = (V,E) a hypergraph, k ∈ N
d← maxe∈E |e|;1

// Begin kernelization
for i← 1 to d do2

Ei ← {e ∈ E : |e| = i };3

Vi ←
⋃

e∈Ei
e;4

while FindSunflower((Vi, Ei), k + 1) 6= (∅, ∅) do5

Let (S,C) be the sunflower returned by FindSunflower ;6

Ei ← (Ei \ S) ∪ {C};7

Vi ← (Vi \
⋃

X∈S X) ∪ C;8

end9

end10

// End kernelization
V ′ ← V1 ∪ V2 ∪ . . . ∪ Vd;11

E′ ← E1 ∪ E2 ∪ . . . ∪ Ed;12

I ← V \ V ′;13

H′ ← (V ′, E′) ;14

return
∑k

i=0CountGHS(H′, i, ∅) · ( |I|k−i

)
;15

Algorithm 6: Counting hitting sets by the sunflower kernelization

Proof. Let H, d and k be defined as above.

To show the correctness of the algorithm we prove the following claim.

Claim 1. Let S with |S| = k + 1 be a sunflower in H with core C. Define
H′ = (V,E′) with

E′ := E \ S ∪ C

then #hs(H, k) = #hs(H′, k).
Proof. The definition of a sunflower implies that, given a sunflower S with k + 1
petals, every cardinality k hitting set in H must have a nonempty intersection
with the core of S. From this observation one can easily infer that every size k
hitting set in H is a hitting set in H′. For the backward direction note that every
size k hitting set X in H′ satisfies C ∩X 6= ∅ and therefore, by the definition of
H′, X is a hitting set of H, as well. √

This claim shows that the kernelization phase of the algorithm (that is the for-
loop) is correct and that with I and H′ = (V ′, E′) defined as in line 13 and 14 of
the algorithm we have

#hs(H, k) = #hs((V ′ ∪ I, E′), k)

For the correctness of the computation in the last line of the algorithm, note that
I is the set of all isolated vertices in H′ and the computation is essentially the
same as in the CountBussVC algorithm on page 17.
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2.3. p-#UniqueHittingSet

Time Complexity. Consider the kernelization phase of the algorithm. Note that,
for each i ∈ [d] the Ei and Vi before the while-loop can be computed in time
O(‖H‖). Furthermore, FindSunflower is called at most O(|E|) times and the
sets Vi and Ei in lines 7 and 8 can be computed in time O(‖H‖).
For the whole kernelization phase this implies a time bound of

O(d · (‖H‖+ |E|(d‖H‖+ ‖H‖))) ≤ O(d2 · |E| · ‖H‖)

The computation of H′ and I can be completed within the same time. For the last
line of the algorithm, note that for the hypergraph H′ = (V ′, E′) the sunflower
lemma implies |E′| ≤ kd·d!·d and |V ′| ≤ kd·d!·d2. Thus we have ‖H′‖ ≤ 2·kd·d!·d2.

The last line of the algorithm induces at most k additions in the sum. By theorem
2.5, the running time of CountGHS(G′, i, ∅) is at most O(d2i · ‖H′‖). As before,
the binomial coefficient can be computed in time O(k). In the following we
omit constants hidden in the ”big Oh” notation of the terms considered. Then,
computing the value

k′∑

i=1

CountGHS(G′, i, ∅) ·
( |I|
k′ − i

)
(2.2)

takes time

k +
k∑

i=0

(d2i · ‖H′‖+ k) ≤ k + k · (k + 1) + kd · d! · d2 ·
k∑

i=0

d2i

= k + k · (k + 1) + kd · d! · d2 · d
2k+2 − 1
d2 − 1

∈ O(kd · d! · d2k+2)

Thus, we get an overall time bound of O(d2 · |E| · ‖H‖+ kd · d! · d2k+2). ¤

2.3. p-#UniqueHittingSet

Among the problems which we consider in this chapter the following problem
and its solution exhibit the weakest similarity to the vertex cover problem. The
decision problem corresponding to p-#UniqueHittingSet is described in [DF99]
(see exercise 3.2.5).

p-#UniqueHittingSet

Instance: A hypergraph H = (V,E)
Parameter: |E|
Problem: Compute the number of unique hitting sets sets in H that is

all sets X ⊆ V satisfying ∀ e ∈ E : |e ∩X| = 1
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Note that, in comparison to many other parameterized problems, the problem
at hand does not include the cardinality of the sets under consideration into the
parameter but it does so for the number of hyperedges in the instance.

The reason that an fpt algorithm is known for this problem is tightly connected to
the property that the hitting sets have to be unique. This means that in addition
to being a hitting set, a unique hitting set has to have exactly one vertex in
common with each hyperedge. We will see the consequences this constraint has
for the design of an fpt algorithm.

As with the previous problems we will outline the well known solution of the
decision problem and show how it can be used to design an efficient algorithm for
the counting problem.

Let H = (V,E) be a p-#UniqueHittingSet instance. Let k := |E|. For all
x, y ∈ V we define an equivalency relation by

x ∼ y =def ∀e ∈ E : x ∈ e⇔ y ∈ e.
Clearly, this relation defines l nonempty equivalency classes for an l ≤ 2k. Let A0

be the equivalency class of all isolated vertices and define Ã := {A1, . . . , Al−1} as
the family of all nonempty equivalency classes, except for A0.

Furthermore, we define H̃ := (Ã, Ẽ). This hypergraph will play the part of the
kernel in our algorithm. Its set of hyperedges Ẽ represents the hyperedges in E
with respect to the equivalency classes in Ã. To make this precise, we define
two functions. Let h : V → Ã be defined by h(v) := A ∈ Ã s.t. v ∈ A, i.e.
we map vertices to their corresponding equivalency classes. A second function
f : 2V → 2Ã defined by f({v1, . . . , vb}) := {h(v1), . . . , h(vb)} does so analogously
for sets of vertices. Note that h (and f) are undefined for isolated vertices (and
sets containing them, respectively). The definition of Ẽ is easy now:

Ẽ := {f(e) | e ∈ E}.

The set A0 the family Ã and the hypergraphs H and H̃ will play a central part
throughout the whole section.

We will construct an algorithm that applies the following theorem.

Theorem 2.9. Let H, H̃ and Ã be defined as above.
Let Ũ be the set of all unique hitting sets in H̃, then the number #uhs(H) of
unique hitting sets in H satisfies:

#uhs(H) =
∑

S̃∈Ũ

2|A0|
∏

A∈S̃

|A| (2.3)

Before we prove theorem 2.9, we will prove some facts that will be helpful in the
actual proof.

Lemma 2.10. (1) Let A ∈ Ã. For every unique hitting set S of H we have
|A ∩ S| ≤ 1.

(2) Let S ⊆ V \ A0 be a unique hitting set in H. Then S̃ := f(S) is a unique
hitting set in H̃. Furthermore |S| = |S̃|.
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(3) Let S̃ be a unique hitting set in H̃. Then every set S ∈ V \ A0 satisfying
f(S) = S̃ is a unique hitting set in H if, and only if, |S| = |S̃| .

Proof. Recall that A0 consists of all isolated vertices in H.

To show (1), assume A ∩ S 6= ∅ and, for contradiction, assume that |A ∩ S| ≥ 2.
That is, there are distinct w, v ∈ A ∩ S. As A0 /∈ Ã, we know that there is a
hyperedge e ∈ E with {v, w} ⊆ e. Thus, |e ∩ S| ≥ 2 in contradiction to S being
a unique hitting set.

For (2), note that (by (1)) any two distinct v, w ∈ S belong to different equivalency
classes. This implies |S| = |S̃|. Furthermore, to see that S̃ is a hitting set consider
a hyperedge f(e) ∈ Ẽ. As e ∩ S = {v} for some v ∈ V , we have h(v) ∈ f(e) by
definition of f . To see that S̃ is a unique hitting set assume that S̃ contains an
equivalency class h(w) 6= h(v) with h(w) ∈ f(e). h(w) 6= h(v) implies v 6= w and,
by the construction of H̃ we have w ∈ e. Contradiction.

Now, it remains to prove (3). For the forward direction, note that, by the defi-
nition of f , |S| < |S̃| is not possible. Therefore assume |S| > |S̃|. This implies,
that there are at least two distinct v, w ∈ S and an A ∈ Ã such that v, w ∈ A.
Thus there is an edge e ∈ E with {v, w} ⊆ S ∩ e contradicting the uniqueness
condition of S.

For the backward direction, let S ∈ V \ A0 be a set satisfying f(S) = S̃ and
|S| = |S̃|. Consider a hyperedge e ∈ E in H. We have to show that |S ∩ e| = 1.
To show |S ∩ e| > 0, note that f(e) satisfies f(e) ∩ A 6= ∅ for some A ∈ S̃ in H̃.
As f(S) = S̃ there is a v ∈ S such that v ∈ A and therefore v ∈ e.
For |S ∩ e| ≤ 1, assume, for contradiction, S ∩ e ⊇ {v, w} for distinct v and w.
We know that, {h(v), h(w)} ⊆ S̃ and as |S| = |S̃|, v and w belong to differ-
ent equivalency classes, that is h(v) 6= h(w). Moreover, by the definition of H̃,
{h(v), h(w)} ⊆ f(e) contradicting the unique hitting set property of S̃. ¤

Now, we are ready to prove the theorem.

Proof (of Theorem 2.9). Note that any hitting set S in H can be partitioned into
a set S0 consisting of all isolated vertices in S and another set S1 := S \ S0.
Conversely, for S1 there are 2|A0| hitting sets in H that contain S1. Therefore,
we can restrict our attention to the non-isolated vertices. That is, we define
H′ := (V \A0, E) and we know that #uhs(H) = #uhs(H′) · 2|A0|. Hence, we still
have to show that

#uhs(H′) =
∑

S̃∈Ũ

∏

A∈S̃

|A| (2.4)

Note that, by lemma 2.10 (1) and (3), it is easy to see, that for a unique hitting
set S̃ = {Ai1 , . . . , Aim} in H̃ there are exactly

m∏

j=1

|Aij | (2.5)

unique hitting sets S in H′ with f(S) = S̃.
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To see ”≥” (in (2.4)), note that by lemma 2.10 (1) and (2) every unique hitting
set S in H′ uniquely identifies its corresponding hitting set S̃ in H̃. Therefore, S
is counted only once in the right hand side expression.

To see ”≤”, note that by lemma 2.10 (2) every unique hitting set S in H is
represented by some S̃ ∈ Ũ, thus this direction follows by (2.5). ¤

With this theorem, we can develop a very simple brute force algorithm, that
solves the problem in H̃ and performs the necessary computations according to
equation (2.4).

To estimate the running time of the algorithm, we have to bound the size of the
kernel H̃ := (Ã, Ẽ). Obviously, by the construction of H̃ we have |Ẽ| = |E| = k
and |Ã| ≤ 2k.

Theorem 2.11. Given a hypergraph H = (V,E) with |E| = k. There is an
algorithm that solves p-#UniqueHittingSet on H in time

O(‖H‖+ k3 · 2k+k2
)

Proof. Given H as above and let |V | = n, we assume that the hyperedges are
ordered, to wit, E = {e1, . . . , ek}. First, the algorithm computes the equivalency
classes and their cardinalities. To achieve this, each vertex v ∈ V is assigned a
k-bit number av set to zero. Then for each hyperedge ei the (i− 1)-th bit entry
of every vertex occurring in ei is set to 1. This can be done in time O(k · n).

Then each nonempty equivalency class Ai is identified by an integer i ∈ [2k]. and
the cardinality of each class can be determined by checking the numbers av for
all vertices v ∈ V . As there are at most n different nonempty equivalency classes,
this can be done in time O(n+ k · n).

We define H′ = (V \A0, E), i.e. H′ is the hypergraph obtained from H by deleting
all isolated vertices.

Furthermore H̃ = (Ṽ , Ẽ) is constructed by setting Ṽ := {i |Ai 6= ∅, Ai ∈ Ã}. As
we have |Ṽ | ≤ n we know that Ṽ can be constructed in polynomial time. Note
that the representative for A0 is excluded from this set, that is 0 /∈ Ṽ . Ẽ can be
obtained from E by substituting in each hyperedge ei each occurrence of a vertex
v ∈ V with av and deleting multiple occurrences of these numbers. This does not
increase the time bounds given so far.

Equation (2.4) shows how to compute #uhs(H′) by means of computing #uhs(H̃).
In a last step #uhs(H) is determined by evaluating the product 2|A0| ·#uhs(H′).
Note that, as |E| = |Ẽ| = k a unique hitting set in H′ (and likewise in H̃), can
be of cardinality at most k. This is due to the fact that every set of at least
k + 1 unisolated vertices contains at least two vertices that occur together in a
hyperedge.

Enumeration phase. The actual work of the algorithm is done by enumerating
subsets S̃ of Ṽ of cardinality at most k. Then, the algorithm determines whether S̃
is a unique hitting set in H̃ and the value according to equation (2.5) is computed.
Eventually, all values for the unique hitting sets found are summed in a number
u and the product 2|A0| · u is returned.
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By the fact that |Ṽ | ≤ 2k, for an l ≤ k, at most
(
2k

l

)
sets have to be enumerated.

Let S be a set of cardinality l ≤ k. Determining whether S is a unique hitting
set takes at most k · 2k · l steps. Computing the value according to equation (2.5)
and adding it to the number of solutions found so far takes l steps.

Hence, for the enumeration phase, we obtain the following bound:

k∑

l=0

(
2k

l

)
· (k · 2k · l + l) = (k · 2k + 1) ·

k∑

l=0

(
2k

l

)
· l

≤ (k · 2k + 1) · k ·
k∑

l=0

(
2k

l

)

≤ (k · 2k + 1) · k · k · (2k)k

≤ (k · 2k + 1) · k2 · 2k2

∈ O(k3 · 2k+k2
)

Note that the estimate above is derived by using the fact that
(
n
k

) ≤ nk.

Therefore, together with the time for the computation of the hypergraph H̃ the
algorithm completes in time O(k · n+ k3 · 2k+k2

) ¤

2.3.1. Applying the Logarithmic Cost Measure Once More

Recall our analysis of the CountBussVC algorithm using the logarithmic cost
measure. The bound on the running time obtained there suggests that the part
of the algorithm that has a running time exponential in k does not depend on
n.

To refute the supposition that this might be the case for all kernelizations of
parameterized counting problems we will give another analysis in application of
the logarithmic cost measure. We will refine the analysis of the algorithm given
in the proof of theorem 2.11.

Lemma 2.12. Given a hypergraph H = (V,E) with |E| = k and |V | = n. There
is an algorithm that solves p-#UniqueHittingSet on H in time

O(‖H‖+ n log n+ k3 · 2k+k2
+ logn · log log n · k3 · 2k2

)

if the logarithmic cost measure is applied.

Proof. Let H = (V,E) be a hypergraph with |E| = k and define n := |V |.
Consider the proof of theorem 2.11. Note that the impact of the logarithmic cost
measure as opposed to the uniform cost measure comes into play mainly in the
computation of the value according to equation (2.5):

m∏

j=1

|Aij |.

Furthermore, let u be the variable which, in each step of the algorithm, contains
the number of unique hitting sets found so far.
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Recall that A0 is the set of all isolated vertices in H and for H′ := (V \A0, E) we
have #uhs(H) = 2|A0|·#uhs(H′). Therefore, after computing the value #uhs(H′)
we can compute the product by a single computation. This has the advantage
that the numbers in the computation of #uhs(H′) are bounded. Hence, we can
derive an upper bound on this number

#uhs(H′) ≤
k∑

i=0

(
n

i

)
≤ k · nk

The inequality holds, by the fact that H′ contains no isolated vertices which
implies that only sets of vertices of cardinality at most k may be unique hitting
sets.

Consider the computation of #uhs(H′). Recall that this value is computed by
means of H̃ = (Ṽ , Ẽ) and that |Ṽ | ≤ 2k. The algorithm enumerates all sets S ⊆ Ṽ
of cardinality at most k. For a set of cardinality l ≤ k determining whether it is
a unique hitting set still takes k · 2k · l steps.

Note that for all equivalency classes Ai ∈ Ã we have |Ai| ∈ O(n) which implies
that they are represented by numbers of at most logn bits. Furthermore the
product of two x-bit numbers can be represented by at most 2x bits. Likewise
for the product of l x-bit numbers, we have at most l · x bits. Hence, computing
the value according to equation (2.5) can be done in time at most l · tmul(l · log n)
(where tmul denotes the time of multiplying two numbers according to fact 0.7).

As #uhs(H′) ≤ k·nk, the number u can be represented by at most log k+k log n ∈
O(k log n) bits. Thus, adding values to u takes time at most O(k log n). In the
following we omit constants hidden in the ”bigOh” notation. For the enumeration
phase, we obtain the new time bound:

k∑

l=0

(
2k

l

)
· (k · 2k · l + l · tmul(l · log n) + k log n)

≤ (k2 · 2k + k · tmul(k · logn) + k logn) ·
k∑

l=0

(
2k

l

)

≤ (k2 · 2k + k · tmul(k · logn) + k logn) · k · (2k)k

≤ (k2 · 2k + k2 · log n · log(k · log n) + k log n) · k · 2k2

= (k2 · 2k + k2 · log n · log k + k2 · log n · log log n+ k log n) · k · 2k2

∈ O(k3 · 2k+k2
+ log n · log log n · k3 · 2k2

)

Note that the product 2|A0| ·#uhs(H′) involves an O(n) bit and an O(k logn) bit
number and can be computed in time O(n log n).

Hence the whole algorithm completes in time

O(k · n+ n logn+ k3 · 2k+k2
+ log n · log log n · k3 · 2k2

)

as claimed. ¤
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2.4. p-#NearlyAPartition

The following problem has a kernelization that is based on a partial reduction to
vertex cover. This means that the problem exhibits a structure similar to that
of the p-#VertexCover problem and therefore some of the facts known about
vertex covers can be exploited to design an algorithm for the problem at hand.
We will see another application of this technique in the next section.

p-#NearlyAPartition

Instance: A hypergraph H = (V,E) and k ∈ N
Parameter: k
Problem: Compute the number of sets E′ ⊆ E with |E′| = k such that

E \E′ is a partition of V

Call the set E′ in the definition above a witness. Given an instance (H,K) with
H = (V,E) we compute a graph G = (E,F ) with

F := {{e1, e2} | e1, e2 ∈ E, e1 ∩ e2 6= ∅}.
Lemma 2.13. If in H there is a E′ ⊆ E with |E′| = k such that E \ E′ is a
partition of V then E′ is a size k vertex cover in G.

Proof. The proof is immediate, because if E \E′ is a partition of V , then E \E′
consists exclusively of pairwise disjoint hyperedges and thus by the definition of
G, E′ covers all edges in G. ¤

Note that we can exclude isolated hyperedges from our consideration without
changing the number of solutions. The lemma above allows us to apply Buss’
kernelization to our problem: As every vertex e in G corresponds to a hyperedge
e in H, we have that if dG(e) > k then e intersects more than k hyperedges in
H then any witness E′ of cardinality k necessarily contains e. Furthermore, if all
e ∈ E satisfy dG(e) ≤ k and |F | > k2 then, by lemma 2.13, H has no witness.

Lemma 2.14. Given a hypergraph H = (V,E) and k ∈ N. There is an algorithm
that solves p-#NearlyAPartition in time

O(‖H‖2 + (1 +
√

3)kk2)

Proof. Note that any algorithm solving p-#VertexCover can be easily adapted
to solve p-#NearlyAPartition within almost the same time bounds. This is
true by the considerations above since CountBussVC can be adapted such that
every solution is checked if it forms a partition of V . Thus the adapted algorithm
completes within the time bounds of algorithm 2.

Furthermore, there is an overhead of O(‖H‖2) in preprocessing for computing
from the input hypergraph H the graph G that forms the input of the vertex
cover algorithm. The Buss kernelization does not increase this time bound. ¤
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2.5. p-#BipartiteEdgeDomination

The last counting problem which we will show a kernelization for is the so-called
Matrix Domination problem. The decision problem can be found in [DF99] and
its corresponding counting problem is defined as follows:

p-#MatrixDomination

Instance: An n× n Matrix M with entries in {0, 1} and k ∈ N
Parameter: k
Problem: Compute the number sets C of exactly k nonzero entries that

dominate all others, in the sense that each nonzero entry of M is
in the same row or column as an entry from C

One well known solution of the decision version of this problem rephrases it as a
problem on bipartite graphs. We will follow this approach and develop a kernel-
ization that is appropriate for counting.

It is easy to see that an n× n matrix M as above can be regarded as a bipartite
graph B(M) = (U,W,E) in such a sense that for each row and column a distinct
vertex is introduced such that U = {r1, . . . , rn} represents all rows and W =
{c1, . . . , cn} represents all columns in M . Then for each nonzero entry aij in M
an edge {ri, cj} is constructed in E:

E := {{ri, cj} | aij = 1, aij ∈M}.

Then, two nonzero entries a, b ∈ M occurring in the same row or column are
represented in B(M) by two edges ea, eb ∈ E that have a vertex in common (i.e.
ea ∩ eb 6= ∅). In this case, we say that the edges ea and eb dominate each other.
Accordingly, for a set of edges S ⊂ E we say that S dominates an edge e ∈ E if
there is an edge f ∈ S such that f ∩ e 6= ∅. If S dominates all edges in a graph G
then S is called an edge dominating set of G.
This implies that there is a one-to-one correspondence between solutions of the
Matrix Domination problem in M and edge dominating sets in B(M). Therefore,
we can solve p-#MatrixDomination by solving the following problem:

p-#BipartiteEdgeDomination

Instance: A bipartite graph B = (U,W,E) and k ∈ N
Parameter: k
Problem: Compute the number of sets S ⊆ E with |S| = k s.t. S

dominates all edges in B

We use the technique of partially reducing the problem to vertex cover again.

Let B = (U,W,E) be a bipartite graph and k ∈ N. By V := U ∪W we denote
the set of all vertices in B. For a set X ⊆ V of vertices define XU := X ∩ U and
analogously XW := X ∩W .
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2.5. p-#BipartiteEdgeDomination

Note that isolated vertices in B don’t play any part in edge dominating sets.
Hence, we can assume w.l.o.g. that in B each vertex occurs in at least one edge.

Edge dominating sets and vertex covers are correlated. Let C ⊆ E be an edge
dominating set of cardinality k in B. Then the set S =

⋃
C is a vertex cover in

B with |C| ≤ 2k. Thus, we could apply Buss’ lemma to our problem but as B is
bipartite, we can do even better, as is shown by the following claim.

Claim 1. Let v ∈ V be a vertex with dB(v) > k. Then for every edge dominating
set C of cardinality at most k in B there is an edge e ∈ C such that v ∈ e.

Proof. Suppose that there is an edge dominating set C with |C| ≤ k such that
∀ e ∈ C : v /∈ e. Then, let e1, . . . ek+1 be k + 1 distinct edges incident with v.
That is, for all i ∈ [k+ 1] ei has the form ei = {v, vi}. Thus, as C dominates all
edges ei, and as B is bipartite, there has to be, for each ei a distinct fi ∈ C such
that ei ∩ fi 6= ∅. Thus |C| ≥ k + 1 in contradiction to our assumption. √

Motivated by this claim, we form the set R := {v ∈ V | dB(v) > k}. By the above
mentioned connection to vertex covers it is easy to see that if |R| > 2k then there
is no edge dominating set of cardinality k in B. As B is bipartite, we can describe
this upper bound on |R| in more detail:

Claim 2. If |RU | > k or |RW | > k then there is no edge dominating set of cardi-
nality k in B.

Proof. Assume that |RU | > k (the case |RW | > k is symmetric). Let v1, . . . , vk+1 ∈
RU be k + 1 distinct vertices. Then for each of these vertices there has to be a
distinct edge in every edge dominating set. Thus there is no edge dominating set
of cardinality k in B. √

Let B|R denote the induced subgraph of B on the vertices in R.

In the following, we consider a partition of the vertices in B that consists of three
sets I,R and K:

• R is defined as above.

• I denotes the set of all vertices x ∈ V \R with NB(x) ⊆ R.

• K := (V \ I) \ R. Hence, K is the set of all vertices in V \ R that have
neighbors outside of R.

We will estimate the size of the subgraph of B induced by K ∪ R. Observe that
for all v ∈ K we have dG(v) ≤ k and as B|K admits no edge dominating set of
cardinality at most k unless it has a vertex cover of size 2k, there can be at most
2k2 edges in B|K . Hence, |K| ≤ 2k + 2k2 and as K = KU ∪KW we can assume
that there is an l ∈ {0, . . . , 2k+2k2} such that |KU | = 2k+2k2− l and |KU | = l.
Thus, by claim 2, there are at most

(2k + 2k2 − l) · k + l · k ≤ 2k2 + 2k3

edges between K and R in B. Furthermore, claim 2 implies as well that B|R
contains at most k2 edges.
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Thus, we have |K ∪R| ≤ 4k + 2k2 and B|K∪R has at most 5k2 + 2k3 edges.

With these considerations in mind, we will develop an algorithm solving
p-#BipartiteEdgeDomination.

Lemma 2.15. There is an algorithm that, given a bipartite graph B = (U,W,E)
and k ∈ N, solves p-#BipartiteEdgeDomination in time

O(‖B‖+ k4 · 14k · k2k)

Proof. Note, that by the considerations above, a set S ⊆ V in B with |S| = k is
an edge dominating set in B if, and only if, it is an edge dominating set in B|K
and for every vertex v ∈ R there is an edge e ∈ S such that v ∈ e.
Let C be the subgraph of B that contains all edges between R and I. Each edge
dominating set can be partitioned into a set of edges from C and another set of
edges from B|K∪R.

Hence, to solve our problem, is suffices to enumerate all subsets L of edges in
B|K∪R with |L| ≤ k. Then for each of theses sets L we have to determine the
number of ways in which edges from C can be added to L such that this results
in a cardinality k edge dominating set of B.

In order to do this, the algorithm checks for all of these subsets L, if it is an edge
dominating set in B|K . If this is not the case, then adding edges from C cannot
form a solution, as edges in C are not adjacent to edges in B|K .

Otherwise, if L with |L| ≤ k is an edge dominating set in B|K , let U := {v ∈
R | ∀e ∈ L : v /∈ e}, that is the set of vertices in R that are not part of an edge
in L. Let l := k − |L| − |U |.
Note that for each vertex v ∈ U we have to add an edge e from C to L to obtain
an edge dominating set of B. Thus, if l < 0 or dC(v) = 0 for a v ∈ U then we can
form no solution from L.

So assume, that l ≥ 0 and dC(v) > 0 for all v ∈ U . Define

a :=
∑

x∈R

dC(x)

Thus there are exactly
(a−|U |

l

)
edge dominating sets of cardinality k in B that

contain L as a subset.

Time. In a preprocessing step the sets R, I, K and the graphs B|K , B|K∪R and
C can be computed together with the values dC(v) for all v ∈ R and the value a
in time O(‖B‖).
For each i ∈ {0, . . . , k} all of the at most

(
5k2+2k3

i

)
cardinality i sets of edges

in B|K∪R are enumerated. For each of these sets L, checking if L is an edge
dominating set in B|K can be done in i · 2k2 steps. Forming the set U takes
i · |R| ≤ i · 2k steps. Determining if there is a v ∈ U with dC(v) = 0 can
be done in time O(|R|) as the values dC(v) are precomputed. Computing the
binomial coefficient takes time O(l). Hence, for a set of cardinality i the necessary
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2.5. p-#BipartiteEdgeDomination

computations can be carried out in time c · (i ·k2 +(i+1) ·k+ l) with c a constant
sufficiently large. For the algorithm (without preprocessing) this results in time:

k∑

i=0

(
5k2 + 2k3

i

)
· c · (i · k2 + (i+ 1) · k + l)

≤ c · k ·
(

5k2 + 2k3

k

)
· (k3 + k2 + 2k)

≤ c · 4k4 ·
(
e · (5k2 + 2k3)

k

)k

≤ c · 4k4 · (e · (5k + 2k2)
)k

≤ c · 4k4 · (e · 5k2
)k

∈ O(k4 · 14k · k2k) ¤

Observe that the algorithm given above is not restricted to bipartite graphs.
Arguably on general graphs the runtime bound degenerates a little bit. However,
it is easy to see that the following still holds

Corollary 2.16. The problem p-#EdgeDomination which is essentially the
p-#BipartiteEdgeDomination problem without restriction to bipartite graphs
is fixed parameter tractable.
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Chapter 3.

Drawing Consequences

In the preceeding chapters we have examined the application of kernelization
techniques to counting problems. In this chapter we will reflect on these results.
Mainly, this reflection will be focused on creating a formal notion of kernelizations
for counting problems. This notion will be justified in two ways. On the one hand,
it will become clear that the algorithmic techniques from the preceding chapters
can be described by this notion. On the other hand we will see that #FPT can
be characterized completely by this concept.

Before we do this, however, we will draw some consequences that do not directly
affect #FPT .

3.1. Redefining #W[P]

The fact that the problem p-#UniqueHittingSet is fixed parameter tractable
reveals some inconsistencies in the definition of several complexity classes that
were defined for parameterized counting problems. For the sake of simplicity we
will restrict our discussion to the inconsistencies between #FPT and the class
#W[P] .

The definition of #W[P] given by Flum and Grohe (cf. [FG06], p. 366) is tightly
connected to certain results from the parameterized complexity theory of decision
problems. The most important notions we will consider here are those underly-
ing the class W[P]. As a detailed introduction of this class would be beyond the
scope of this work, we refer the reader not familiar with it to [FG06]. Further-
more, we expect some familiarity with nondeterministic Turing machines. For an
introduction see, for example, Appendix A of the book mentioned.

We give a brief overview of the necessary facts.

Definition 3.1. (1) Let Σ be an alphabet and κ : Σ∗ → N a parameteriza-
tion. A nondeterministic Turing machine M with input alphabet Σ is called
κ-restricted if there are computable functions f, h : N → N and a polyno-
mial p ∈ N0[X] such that on every run with input x ∈ Σ∗ the machine M
performs at most f(κ(x)) ·p(|x|) steps, at most h(κ(x)) · log |x| of them being
nondeterministic.

(2) W[P] is the class of all parameterized problems (Q,κ) that can be decided
by a κ-restricted Turing machine.

For M a κ-restricted Turing machine with input alphabet Σ and x ∈ Σ∗ the value
#accM(x) denotes the number of accepting runs of M on x.
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The class #W[P] can be regarded as a W[P] analog for counting problems (cf.
[FG06] Definition 14.15 , p. 366). For reasons that will become clear soon, we
refer to this class as #W[P]bounded.

Definition 3.2. A parameterized counting problem (F, κ) over the alphabet Σ is
in #W[P]bounded if there is a κ-restricted nondeterministic Turing machine M
such that for every x ∈ Σ∗, we have

F (x) = #accM(x).

Note that, in the case of parameterized decision problems, FPT ⊆ W[P] is easily
seen to be true. For parameterized counting problems, one would like to have the
analogous fact #FPT ⊆ #W[P]bounded, as intuitively #FPT is a class of computa-
tionally easy problems and #W[P]bounded contains many intractable problems.

However, it is easily observable that there are fixed parameter tractable count-
ing problems that are not contained in #W[P]bounded. To see this consider a
parameterized counting problem (F, κ) over the alphabet Σ that is contained
in #W[P]bounded. Let M be a κ-restricted Turing machine witnessing (F, κ) ∈
#W[P]bounded and let f, h, p be as in definition 3.1. Observe that there is a con-
stant c = c(M) such that every nondeterminitic step of M can be described by at
most c bits. Hence for x ∈ Σ∗, k := κ(k) and n := |x| each accepting run of M
on x can be described by c ·h(k) · log n ≤ 2c ·h(k) · blognc bits. This implies that
there are at most

22c·h(k)·blog nc ≤ n2c·h(k)

different accepting runs of M on x. Therefore, for all x ∈ Σ∗ we have

F (x) ≤ |x|2c·h(k).

With this in mind we can construct a counting problem that is fixed parameter
tractable but not in #W[P]bounded. Let (F ′, κ′) be a counting problem over Σ
with κ′(x) := 1 for all x ∈ Σ∗ and F ′(x) := 2|x|. Note that, F ′(x) can be
computed in linear time. Assume, for contradiction, that (F ′, κ′) is contained in
#W[P]bounded, then by the definition of κ′ and the consideration above, there is a
constant c such that F ′(x) ≤ |x|c for all x ∈ Σ∗. By the definition of F ′ there are
large enough x ∈ Σ∗ such that F ′(x) = 2|x| > |x|c, in contradiction to (F ′, κ′) ∈
#W[P]bounded.

The example above suggests a redefinition either of the class #W[P] or of #FPT.
Up to now, there has been no reasonable evidence that motivates favoring either
of these possibilities. With the discussion of the problems in the previous chap-
ters, however, this situation has changed. Of course, almost all of the problems
considered there suggest a redefinition of the class #FPT, as they are contained
in #W[P]bounded.

Nevertheless, we have seen that the problem p-#UniqueHittingSet is fixed
parameter tractable as well. Furthermore, the argument for (F ′, κ′) above can
easily be adapted to p-#UniqueHittingSet if we restrict our dicussion to hy-
pergraphs without hyperedges. Let H = (V, ∅) be such a hypergraph, then the
number of unique hitting sets inH equals 2|V |. Hence, p-#UniqueHittingSet is
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an example of a natural problem in #FPT that is not contained in #W[P]bounded.
Therefore, we will give a definition of #W[P] as a class explicitly closed under a
certain type of reductions which will circumvent this inconsistency.

To define the reductions needed, we will deal with oracle algorithms. With regard
to our purposes it suffices to note that for an alphabet Σ an algorithm with an
oracle to a function G : Σ∗ → N is equipped with a certain oracle query. This
query of the form ”G(y) =?” can be posed by the algorithm for any y ∈ Σ∗ and
the oracle returns the correct answer in unit time.

Definition 3.3. Let (F, κ) and (G,λ) be parameterized counting problems over
the alphabets Σ and Γ, respectively.

An fpt Turing reduction from (F, κ) to (G,λ) is an algorithm A with an oracle
to G such that:

a) A computes F .

b) A is an fpt algorithm (with respect to κ).

c) There is a computable function g : N → N such that for all oracle queries
”G(y) = ?” posed by A on input x, we have λ(y) ≤ g(κ(x)).

The concept of parameterized Turing reductions is very powerful. Therefore,
in our redefinition of #W[P] we restrict our attention to parameterized Turing
reductions with at most one oracle call. For parameterized counting problems
(F, κ) and (G,λ) we write (F, κ) ≤fpt−T ! (G,λ) if there is an fpt Turing reduction
from (F, κ) to (G,λ) that calls the oracle only once.

For a class C of parameterized counting problems, we define

[C]fpt−T ! := {(G,λ) | ex. (F, κ) ∈ C : (G,λ) ≤fpt−T ! (F, κ)}

which we call the closure of C under parameterized Turing reductions with a
single oracle call. This is the explicit closure we mentioned earlier and hence we
can give the redefinition.

Definition 3.4. #W[P] := [#W[P]bounded ]fpt−T !

Note that it is easy to see that #FPT ⊆ #W[P] , as every problem in #FPT
is trivially fpt-T!-reducible to any counting problem. Furthermore, as Turing re-
ductions are very powerful we want to restrict their application in defining our
complexity classes as far as possible. This receives its motivation from the inten-
tion that we seek natural counting analogs of parameterized complexity classes
for decision problems.

3.2. Counting Kernelization

Recently, there has been some interest in forming a notion of kernelizations for
counting problems. For example Nishimura et al. (cf. [NRT05]) suggested the
notion of compactor enumeration, which means to reduce the input instance such
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that the resulting instance depends only on the parameter. Then by enumerating
the solutions of the reduced instance, one can compute the number of solutions
of the original instance.

However, this notion has not yet been thoroughly formalized. In particular, the
informal definition of a compactor from [NRT05] is not applicable to counting
problems in general.

In this section we will remedy this deficiency by formally describing kernelizations
of counting problems. Note that in this purely theoretical context we regard
computations always as computations of Turing machines. We begin with some
preliminary definitions.

Definition 3.5. Let κ : Σ∗ → N be a parameterization of Σ∗.
• A mapping K : Σ∗ → Σ∗ is κ-bounded if there is a computable function
g : N→ N such that for all x ∈ Σ∗:

|K(x)| ≤ g(κ(x)).

• A relation Y ⊆ Σ∗×{0, 1}∗ is K-aware for a κ-bounded mapping K if there
are computable functions h, f : N→ N such that for every x ∈ Σ∗ and every
y ∈ {0, 1}∗:
(1) Given K(x), it can be decided in time f(κ(x)) whether (K(x), y) ∈ Y

holds.

(2) if (K(x), y) ∈ Y then |y| ≤ h(κ(x)).

Recall that in the introduction we formed the requirement (requirement 0.6) that
for a counting problem (F, κ) the precomputation on an instance x ∈ Σ∗ can
be done in polynomial time such that the size of the reduced instance K(x) is
bounded by some function of the parameter. Intuitively a κ-bounded mapping K
will play the role of this precomputation.

Furthermore, we stipulated that only the reduced instance K(x) will be solved by
a search algorithm. We did not clarify these notions, but in our formal concept
of counting kernelizations we will define a K-aware relation Y to characterize the
”solutions” of the reduced instance K(x) that have to be found by such a search
algorithm. Unfortunately, the formal definition of a counting problem does not
mention what a solution might be. Therefore we will formalize this by the notion
of witnesses:

Let Y ⊆ Σ∗×{0, 1}∗ be a relation. For x ∈ Σ∗ we define wY (x) := {y |(x, y) ∈ Y }
as the set of witnesses of x in Y .

The following lemma shows the relation between fixed parameter tractable count-
ing problems and K-aware relations. In the proof of this lemma the general
meaning of witnesses will become clear.

Lemma 3.6. Let (F, κ) ∈ #FPT be a parameterized counting problem over Σ.
Let K : Σ∗ → Σ∗ be a κ-bounded polynomial time computable mapping.

There is a K-aware relation Y ⊆ Σ∗ × {0, 1}∗ such that for all x ∈ Σ∗:

F (K(x)) = |wY (K(x))|.
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Proof. Let x ∈ Σ∗, n := |x| and k := κ(x). As (F, κ) ∈#FPT there is a com-
putable function f : N→ N and a polynomial p(X) such that F (x) is computable
in time f(k)·p(n). Furthermore asK is κ-bounded, there is a computable function
g such that we have

|K(x)| ≤ g(k).

Observe that, since κ : Σ∗ → N is polynomial time computable, κ(K(x)) can be
computed in time |K(x)|O(1) ≤ g(k)O(1). As κ computes natural numbers, we may
assume w.l.o.g. that these are represented in binary. Hence, for a computable
function h(k) := 2g(k)O(1)

we know that

κ(K(x)) ≤ h(κ(x)).

Thus, given K(x) the value F (K(x)) can be computed in time

f(κ(K(x))) · p(|K(x)|) ≤ f(h(k)) · p(g(k)) =: f∗(k)

which implies that there is a computable function r such that F (K(x)) ≤ r(k).
Before we construct the K-aware relation Y we describe a κ-restricted Turing
machine M that computes the function F ′(x) := F (K(x)). This will simplify our
task of defining Y .

M computes F ′(x) as follows:

First K(x) is computed in polynomial time. Then M computes F (K(x)) and a
dlog r(k)e bit number c is guessed nondeterministically. M accepts if and only if
0 < c ≤ F (K(x)).

It is easy to see that M is a valid κ-restricted Turing machine and that

F ′(x) = F (K(x)) = #accM(x).

The definition of Y is very simple, now:

Y := {(K(x), y) ∈ Σ∗ × {0, 1}∗ | |y| = dlog r(κ(x))e, y represents
the nondeterministic steps of an accept-
ing run of M on x }

This directly implies F ′(x) = #accM(x) = |wY (K(x))|.
We still have to show that Y is K-aware. Note that for (K(x), y) ∈ Y condition
(2) of definition 3.5 holds, that is, |y| ≤ r(k). To see that condition (1) holds, we
show, given K(x) and y ∈ {0, 1}∗, how to decide (K(x), y) ∈ Y in time depending
only on k.

An algorithm deciding this deterministically simulates the computation ofM after
K(x) has been computed. To simulate the nondeterministic steps ofM the bits in
y are used. As M performs at most f∗(k) steps for the computation of F (K(x))
and the guessed number c satisfies c ≤ r(k), the simulation takes time only
depending on k. Therefore, condition (1) holds and hence Y is K-aware. ¤
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Note that in the proof above, it is not essential that (F, κ) is fixed parameter
tractable. It is only necessary that (F, κ) can be computed by some algorithm.
However as we are concerned only with #FPT this lemma satisfies our needs. We
will use it it the next section to show that the concept of counting kernelizations,
which we will define now, characterizes all counting problems in #FPT.

We have discussed already the intuition behind the concepts of κ-bounded map-
pings K and K-aware relations. The last ingredient we need is a function, say
µ, that for each solution y of the reduced instance K(x) computes the number
of solutions of an instance x ∈ Σ∗ that are ”represented” by y. In the case of
p-#VertexCover, for example, this was done by computing a binomial coeffi-
cient.

In chapter 1 and 2 we discussed two running time analyses that applied the
logarithmic cost measure. Particularly the analysis of the algorithm solving
p-#UniqueHittingSet implies that we cannot hope to bound the running time
of µ in terms of the parameter. This is even more so as in this chapter we con-
sider computations exclusively as computations of Turing machines, hence we
may assume no operations except for trivial ones to take unit time. Moreover,
the function µ has to depend on the original instance x to be able to create the
link between K(x) and x.

Definition 3.7 (Counting Kernelization). Let (F, κ) be a parameterized count-
ing problem over Σ. A pair (µ,K) of polynomial time computable functions
K : Σ∗ → Σ∗ and µ : Σ∗ × Σ∗ × {0, 1}∗ → N is called a counting kerneliza-
tion of (F, κ) if there are computable functions g, h : N → N such that for all
x ∈ Σ∗ the following is satisfied:

(1) K is κ-bounded

(2) There is a K-aware relation Y ⊆ Σ∗ × {0, 1}∗ such that

F (x) =
∑

y ∈wY (K(x))

µ(x,K(x), y) (3.1)

Note that, if the set wY (K(x)) in the definition above is empty, we regard
the sum as evaluating to zero. We have to stress that if µ(x,K(x), y) is poly-
nomial time computable this means that it is polynomial time computable in
|x| + |K(x)| + |y| ≤ |x| + g(k) + h(k). With respect only to |x|, we would have
to admit that µ(x,K(x), y) is fpt-computable as |K(x)| and |y| can be arbitrarily
large, depending only on κ(x). In practical problems, however, |K(x)| and |y| are
often bounded by |x| and then polynomial time computability of µ implies that
µ is polynomial time computable in |x|. Therefore, we claim that it is reasonable
to impose this constraint on µ.

Nevertheless, this definition still seems somewhat arbitrary. Its motivation will
become clear if we know how to apply it to the problems studied in the previous
chapters. We will begin with p-#VertexCover.

The counting kernelization of p-#VertexCover. Recall the Buss kernelization
and in particular the algorithm CountBussVC studied in the first chapter. Note
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that CountVC is applied in the algorithm CountBussVC (see algorithm 2) to
improve upon the time bound of theorem 1.1. Hence we have to regard Count-
BussVC as a combination of a bounded search tree algorithm and kernelization
techniques. To isolate the kernelization techniques, we present algorithm 7 which
consists of lines 1-14 of CountBussVC. Note that KBuss computes a mapping
that satisfies condition (1) of a counting kernelization.

KBuss(G, k) // G = (V,E) a graph, k ∈ N
V ′ ← V ; E′ ← E;1

k′ ← k; G′ ← (V ′, E′);2

while there is a v ∈ V ′ with dG′(v) > k′ do3

E′ ← E′ \ {e ∈ E | ∃ w ∈ V ′ : e = {v, w}};4

V ′ ← V ′ \ {v}; G′ ← (V ′, E′);5

k′ ← k′ − 1;6

end7

if k′ = 0 and E′ = ∅ then G′ = (V ′, E′)← G1;8

if k′ ≤ 0 or |E′| > (k′)2 or |V ′| < k′ then9

// i.e. #vc(G′, k′) = 0
G′ = (V ′, E′)← G0;10

k′ ← 0 ;11

end12

I ← {v ∈ V ′ | dG′(v) = 0};13

V ′ ← V ′ \ I;14

G′ ← (V ′, E′);15

return (G′, k′);16

Algorithm 7: Isolating the kernelization phase of CountBussVC

Let (G, k) with G = (V,E) be an instance of p-#VertexCover. The mapping
KBuss computes an instance KBuss(G, k) = (G′, k′) such that with G′ = (V ′, E′)
we have |V ′| ≤ 2k2 and |E′| ≤ k2.

We define a relation Y such that for all instances (G, k) of p-#VertexCover and
y ∈ {0, 1}∗ we have ((G, k), y) ∈ Y if and only if y represents a vertex cover of size
at most k in G. Note that ”represents” in this context denotes any reasonable
representation of sets S ⊆ V by binary numbers. Hence, wY ((G′, k′)) can be
enumerated in time h(k) for some computable function h.

Let (G, k) and (G′, k′) be defined as above and consider a string y ∈ {0, 1}∗ that
represents a vertex cover C in G′ with |C| ≤ k′. Let m := |V \ V ′| − (k − k′).
Note that for the set I from line 13 of the algorithm KBuss we have m = |I|.
In the same way as in CountBussVC the set I consists of all vertices that can
be combined with C to form a size k vertex cover of G. Thus for every subset
X ⊂ I of cardinality k′ − |C| the union X ∪ C is a size k′ vertex cover of G. As
implicitely the k − k′ vertices in G deleted in the while-loop of algorithm KBuss

are considered as being contained in every size k vertex cover, X ∪ C represents
such a vertex cover of cardinality k in G.
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Hence, defining

µ((G, k), (G′, k′), y) :=
(

m

k′ − |C|
)

completes the counting kernelization.

Note that all problems we have given kernelization algorithms for can be described
in an analogous manner by counting kernelization. Therefore we give only one
further example:

The counting kernelization of p-#UniqueHittingSet. We show how the solu-
tion of p-#UniqueHittingSet presented in chapter 2 can be viewed as a count-
ing kernelization (µ,K). Recall that for an input hypergraph H = (V,E) with
|E| := k the equivalency classes Ã := {A1, . . . , Al−1} and the equivalency class
A0 of all isolated vertices in H were constructed. Furthermore the hypergraph
H̃ := (Ã, Ẽ) was defined such that its size ‖H̃‖ depended only on k. The given
algorithm enumerates all unique hitting sets in H̃ are and for each unique hitting
set S̃ the value

2|A0|
∏

A∈S̃

|A|

according to equation (2.3) is computed, giving the number of unique hitting sets
in H that are represented by S̃.

In the counting kernelization the mapping K performs the construction of H̃,
which was shown to take polynomial time. Computing the value according to
equation (2.3) clearly takes polynomial time, therefore we give this piece of work
over to µ. That is, for a unique hitting set S̃ in H̃, we define

µ(H, H̃, S̃) := 2|A0|
∏

A∈S̃

|A|.

Define the relation Y such that for all instances H of p-#UniqueHittingSet
that contain no isolated vertices and y ∈ {0, 1}∗ we have (H, y) ∈ Y if and only if y
represents a unique hitting set in H. As for every H the reduced graph K(H) = H̃
does not contain isolated vertices, we have found our counting kernelization.

3.3. Characterizing #FPT by Counting Kernelizations

Up to now, we have seen that counting kernelizations can be used to describe
certain fpt algorithms for counting problems. In this section we will see that the
notion of counting kernelizations is even more general in the sense that it provides
a characterization of fixed parameter tractable counting problems.

Theorem 3.8. Let (F, κ) be a parameterized counting problem. The following
are equivalent:

(1) (F, κ) ∈ #FPT

(2) (F, κ) has a counting kernelization.
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Proof. (2) ⇒ (1): Let (µ,K) be a counting kernelization of (F, κ) and let Y ⊆
Σ∗ × {0, 1}∗ be a K-aware relation satisfying definition 3.7. Let x ∈ Σ∗, n := |x|,
k := κ(x) and p(X) a polynomial bounding the time needed to compute µ and K.
As K is κ-bounded there is a computable function g such that |K(x)| ≤ g(κ(x)).
We give an fpt algorithm that computes F (x). First, K(x) is computed in time
p(n). By the definition of Y and |K(x)| ≤ g(k) the set wY (K(x)) can be computed
in time h(k) for some computable function h. Note that this implies |y| ≤ h(k) for
all y ∈ wY (K(x)). Hence µ(x,K(x), y) can be computed in time p(n+g(k)+h(k))
and the whole sum from equation (3.1) takes times at most h(k)·p(n+g(k)+h(k)).

Consequently, the whole computation can be performed in time

p(n) + h(k) + h(k) · p(n+ g(k) + h(k)) ≤ (h(k) + 1) · (1 + p(n+ g(k) + h(k))).

We may assume that p(X) = Xc for a constant c. Then, by the inequality
a+ b ≤ a · (b+ 1) (for a, b ∈ N), we get

(h(k) + 1) · (1 + p(n+ g(k) + h(k))) ≤ (h(k) + 1) · (1 + nc · (g(k) + h(k) + 1)c)
≤ (h(k) + 1) · (1 + (g(k) + h(k) + 1)c) · nc

= f(k) · nc

with f(k) := (h(k)+1) ·(1+(g(k)+h(k)+1)c). And thus the algorithm presented
is an fpt algorithm.

(1) ⇒ (2): Let A be an algorithm that, for every x ∈ Σ∗, computes F (x) in time
f(κ(x)) · p(|x|) for some computable function f and a polynomial p(X). W.l.o.g.
we may assume that p(n) ≥ n for all n ∈ N.

In the following, we construct a counting kernelization (µ,K) of (F, κ).

If F (x) = 0 for all x ∈ Σ∗, we define K(x) := z for all x ∈ Σ∗ and an arbitrary
z ∈ Σ. Furthermore, µ(x,K(x), y) := 0 for all x ∈ Σ∗ and all y ∈ {0, 1}∗. Then
with Y := ∅ we obtain a valid counting kernelization.

Otherwise, we fix a z ∈ Σ∗ such that F (z) = az 6= 0. For x ∈ Σ∗ with n := |x|
and k := κ(x). First, we define K(x):

The algorithm A is simulated on input x for p(n) · p(n) steps and the following
function is computed:

K(x) :=





z , if x = z
or A completes in p(n) · p(n) steps

x , otherwise

Set f∗(k) := |z| + f(k). By definition, K is computable in polynomial time and
for all x ∈ Σ∗ we have |K(x)| ≤ f∗(k). To see this, note that if x = z or if K(x)
is computable in p(n) · p(n) steps we have |K(x)| = |z| ≤ f∗(k). Otherwise we
know that |x|2 ≤ p(n) · p(n) ≤ f(k) · f(k) and hence |K(x)| = |x| ≤ f∗(k).
Let Y ⊆ Σ∗×{0, 1}∗ be a K-aware relation according to lemma 3.6. In particular,
note that F (K(x)) = |wY (K(x))| holds. Furthermore, as z is fixed, we may
assume that F (z) = |wY (z)| holds as well.

53



Chapter 3. Drawing Consequences

Observe that, by the definition of Y , given K(x) and z the sets wY (K(x)) and
wY (z) can be enumerated in time g(k) for some appropriate computable function
g.

As F (z) 6= 0, we know that wY (z) is nonempty and hence we may fix a yz ∈ wY (z).

We are now able to define the function µ : Σ∗ × Σ∗ × {0, 1}∗ → N. Recall that µ
has to be polynomial time computable and

F (x) =
∑

y ∈wY (K(x))

µ(x,K(x), y) (3.2)

has to be satisfied for all x ∈ Σ∗.
Consider an argument (x,K(x), y) of µ.

For x = z, we define µ(z,K(z), y) := 1 for all y ∈ {0, 1}∗. Clearly equation (3.2)
is satisfied.

Otherwise, if x 6= z and K(x) = z, we know by the definition of K that the value
F (x) can be computed in polynomial time. Hence, define µ(x,K(x), yz) := F (x)
and for all y 6= yz we set µ(x,K(x), y) := 0. Observe that equation (3.2) is
satisfied here as well.

If x 6= z and K(x) 6= z, the definition of K implies that K(x) = x. Then we define
µ(x,K(x), y) := 1 for all y ∈ {0, 1}∗. As the sum in equation (3.2) is defined only
over y ∈ wY (x), the equation is satisfied.

We summarize the considerations above by a formal definition of µ:

µ(x,K(x), y) :=





1 , if x = z
or x 6= z ∧K(x) 6= z

F (x) , if x 6= z ∧K(x) = z ∧ y = yz

0 , if x 6= z ∧K(x) = z ∧ y 6= yz

It is easy to see that the given functions K and µ are polynomial time computable
and that for all x ∈ Σ∗ equation (3.2) is satisfied. Hence (µ,K) is a counting
kernelization of (F, κ). ¤
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Chapter 4.

An Introduction to Parameterized Intractability

Parameterized Complexity has its own theory of intractability which comprises
new complexity classes. Among these are the classes of the A and W-hierarchy
and their analogs defined for counting problems: the #A and #W hierarchy. We
will restrict our attention to the class #A[1] which forms the first level of the
#A hierarchy. As this class is defined by means of logical problems, we have to
introduce some notions from first order logic (FO).

Recall that, for a set A, An denotes the n-term cartesian product of A, that is

An := A× . . .×A︸ ︷︷ ︸
n times

.

A relational vocabulary τ is a finite set of relation symbols. Each relation sym-
bol R ∈ τ has an arity ar(R) ≥ 1. A τ−structure (or structure) A is a tuple
(A, (RA)R∈τ ) that consists of a finite set A, called the universe of A and of an
interpretation RA ⊆ Aar(R) of each relation symbol R ∈ τ . Furthermore, the size
of a τ -structure A is defined as follows:

‖A‖ := |A|+
∑

R∈τ

ar(R) · |RA| (4.1)

Syntax of FO. We define the countably infinite set VAR = {x1, x2, . . .} as the
set of variables. For convenience we often take lower case letters x, y, . . . to denote
variables. Given a vocabulary τ and variables x1, x2, . . ., an atomic τ -formula is
of the form Rx1 . . . xar(R) for R ∈ τ , or x1 = x2.

First-order τ -formulas consist of atomic τ -formulas connected by Boolean connec-
tives (¬,∧,∨) and quantified by existential or universal quantifiers ∃, ∀. Instead
of ¬x = y we often write x 6= y. The set of all first order formulas is denoted by
FO.

For our purposes it will be convenient to consider the quantifier-free fragment
Π0 of FO. We call a first order formula ϕ quantifier-free if it contains no quan-
tifiers and by Π0 we denote the set of all these formulas. For ϕ ∈ Π0 we write
ϕ(x1, . . . , xk) to denote that the variables in ϕ are among x1, . . . , xk.

Note that we can consider τ -formulas in a straightforward manner as strings over
some alphabet ΣFO[τ ] = VAR ∪ τ ∪ {∧,∨,¬, ∃, ∀,=, (, )}. Therefore, we define
|ϕ| for a ϕ ∈ FO as the length of the string ϕ.
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Semantics. Let τ be a vocabulary. We restrict our considerations to τ -formulas
from Π0. Let ϕ(x1, . . . , xk) ∈ Π0 and A be a τ -structure. The relation ϕ(A) ⊆ Ak

is defined inductively:

• If ϕ(x1, . . . , xk) = Rxi1 . . . xir with ar(R) = r and i1, . . . , ir ∈ [k], then

ϕ(A) := {(a1, . . . , ak) ∈ Ak | (ai1 , . . . , air) ∈ RA}.

• If ϕ(x1, . . . , xk) = ¬ψ(xi1 , . . . , xil) with i1, . . . , il ∈ [k], then

ϕ(A) := {(a1, . . . , ak) ∈ Ak | (ai1 , . . . , ail) /∈ ψ(A)}.

• If ϕ(x1, . . . , xk) = ψ(xi1 , . . . , xil)
∧∨ χ(xj1 , . . . , xjm)

with i1, . . . , il, j1, . . . , jm ∈ [k], then

ϕ(A) := {(a1, . . . , ak) ∈ Ak | (ai1 , . . . , ail) ∈ ψ(A) and
or (aj1 , . . . , ajm) ∈ χ(A)}.

4.1. The Class #A[1]

The parameterized complexity class #A[1] is defined via a so-called model count-
ing problem, based on the evaluation of Π0 formulas. Formally, it is defined in
the following way:

p-#MC(Π0)

Instance: A structure A and a formula ϕ ∈ Π0

Parameter: |ϕ|
Problem: Compute |ϕ(A)|.

Note that, for an instance (A, ϕ) of p-#MC(Π0), we write ϕ(x1, . . . , xk) if all of
these variables actually occur in ϕ. This is necessary, as otherwise the expression
|ϕ(A)| would be ambiguous.

We will deal with oracle algorithms again. Recall the definition of fpt Turing
reductions from the previous chapter:

Definition 4.1. Let (F, κ) and (G,λ) be parameterized counting problems over
the alphabets Σ and Γ, respectively.

An fpt Turing reduction from (F, κ) to (G,λ) is an algorithm A with an oracle
to G such that:

a) A computes F .

b) A is an fpt algorithm (with respect to κ).

c) There is a computable function g : N → N such that for all oracle queries
”G(y) = ?” posed by A on input x, we have λ(y) ≤ g(κ(x)).
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We write (F, κ) ≤fpt−T (G,λ), for parameterized counting problems (F, κ) and
(G,λ), if there is an fpt Turing reduction from (F, κ) to (G,λ). Recall that we
write (F, κ) ≤fpt−T ! (G,λ) if an fpt Turing reduction utilizes at most one oracle
call.

Note that (F, κ) ≤fpt (G,λ) implies (F, κ) ≤fpt−T ! (G,λ) which in turn implies
(F, κ) ≤fpt−T (G,λ).

We are now able to define the class #A[1]:

Definition 4.2. #A[1] := [p-#MC(Π0)]fpt−T !

Observe that this definition entails that for a parameterized counting problem
(F, κ), (F, κ) ∈ #A[1] if, and only if, (F, κ) ≤fpt−T ! p−#MC(Π0). However, by
our considerations above we know that an fpt parsimonious reduction suffices to
show the containment.

Note that in [FG06] the class #A[1] is defined by a closure under fpt parsimonious
reductions. Our motivation to give an alternative definition is essentially the same
as that for redefining #W[P] - we want to make sure that #FPT ⊆ #A[1] holds.
Hence we refer to the class defined in [FG06] by #A[1]bounded. Thus we clearly
have that #A[1]bounded is a proper subset of #A[1] as p-#UniqueHittingSet is
not contained in #A[1]bounded.

We say that a parameterized counting problem (F, κ) is #A[1]-hard under fpt
parsimonious reductions, if p-#MC(Π0) ≤fpt (F, κ). Likewise, (F, κ) is #A[1]-
hard under fpt Turing reductions, if p-#MC(Π0) ≤fpt−T (F, κ).

Hence if these hardness results go along with (F, κ) ∈ #A[1], we say that (F, κ) is
#A[1]-complete under the corresponding reductions. Note that all completeness
results for #A[1]bounded straightforwardly extend to #A[1].

In the remainder of this section we state the existence of a #A[1]-complete pa-
rameterized counting problem. Recall that a clique Kk is the complete graph on
k vertices, to wit, Kk = ([k],

(
[k]
2

)
).

p-#Clique

Instance: A graph G = (V,E) and k ∈ N
Parameter: k
Problem: Compute the number of Kk in G

This problem is the most important starting point for showing the #A[1]-hardness
of certain problems. Therefore we state its completeness.

Fact 4.3. p-#Clique is #A[1]-complete under fpt parsimonious reductions.

A proof of this fact can be found in [FG06], therefore we omit it.
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Chapter 5.

The Parameterized Complexity of Counting
Bipartite Cliques

The first hardness result which we will show involves the problem of counting
bipartite cliques in bipartite graphs. We will make this precise by some defini-
tions.

Definition 5.1. 1. A bipartite clique is a bipartite graph Kk,l = ([k], [l], F )
for k, l ∈ N such that F contains all edges between [k] and [l].

2. A bipartite digraph is a triple B = (U,W,F ) with F ⊆ U ×W ∪W × U .

3. A trivially directed bipartite graph is a bipartite digraph B = (U,W,F ) such
that F ⊆ U ×W .

4. A trivially directed bipartite clique is a trivially directed bipartite graph
~Kk,l = ([k], [l], [k]× [l]) for k, l ∈ N.

Unless stated otherwise, we consider digraphs without loops, that is, edges of
the form (v, v) are disallowed. Note that bipartite digraphs contain no loops by
definition.

Now, we are able to state our problem formally:

p-#BipartiteClique

Instance: A bipartite graph B = (U,W,F ) and k, l ∈ N
Parameter: k, l
Problem: Compute the number of Kk,l in B

We will prove that p-#BipartiteClique is #A[1]-complete under fpt Turing
reductions. The proof is carried out by a chain of reductions. The first of these
reductions demonstrates the #A[1]-hardness of certain kinds of homomorphism
problems.

Let us clarify our notion of homomorphisms and isomorphisms.

Definition 5.2. Given a relational vocabulary τ and τ -structures A = (A, (RA)R∈τ )
and B = (B, (RB)R∈τ ).

(1) A homomorphism from A to B is a mapping h : A→ B such that for every
R ∈ τ with ar(R) = r and every tuple ā = (a1, . . . , ar) ∈ Ar we have:

ā ∈ RA ⇒ h(ā) := (h(a1), . . . , h(ar)) ∈ RB.
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(2) An isomorphism from A to B is a bijective mapping f : A → B such that
for every R ∈ τ with ar(R) = r and every tuple ā = (a1, . . . , ar) ∈ Ar we
have:

ā ∈ RA ⇔ f(ā) ∈ RB.
By HOM(A,B) we denote the set of all homomorphisms from A to B.
An automorphism of a structure A is an isomorphism from A to A.

Since digraphs can be considered as structures on the vocabulary

τdigraph := {E},

homomorphisms and isomorphism for digraphs are defined by the definition above.

For bipartite digraphs G = (UG ,W G , EG) and H = (UH,WH, EH) this follows in
a similar manner, if we regard them as structures AG = (UG ∪̇WG , UG ,W G , EG)
and AH = (UH ∪̇WH, UH,WH, EH) over the vocabulary τbi := {U,W,E} with
ar(U) = ar(W ) = 1 and ar(E) = 2.

The first step of the reduction is shown in the next section. For classes C and D
of graphs the problems we will deal with are defined as follows:

p-#Hom(C)

Instance: A digraph A ∈ C and a digraph B
Parameter: ‖A‖
Problem: Count the number of homomorphisms from A to B

p-#Hom(C,D)

Instance: A digraph A ∈ C and a digraph B ∈ D
Parameter: ‖A‖
Problem: Count the number of homomorphisms from A to B

5.1. The complexity of p-#Hom(C)

In this section we will see that p-#Hom(C) is #A[1]-hard for some special classes
of digraphs. The proofs rely on some graph theoretic notions that originated in
graph minor theory. We will begin with a brief overview of the necessary concepts
and facts.

A tree T = (T, F ) is a directed acyclic graph. Recall that acyclic means that T
contains no cycle.

Definition 5.3. Given a graph G = (V,E), a tree-decomposition of G is a pair
(T , (Bt)t∈T ) such that T = (T, F ) is a tree and (Bt)t∈T a family of subsets of V
satisfying the following conditions:
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1. For every v ∈ V the set B−1(v) := {t ∈ T | v ∈ Bt} is nonempty and
connected in T .

2. For every edge {v, w} ∈ E there is a t ∈ T such that {v, w} ⊆ Bt

The sets Bt are the bags of the tree-decomposition.
We define the width of a tree-decomposition (T , (Bt)t∈T ) as maxt∈T |Bt| − 1.
The treewidth tw(G) of a graph G is the minimum width of all tree-decompositions
of G.

A class C of graphs is of bounded treewidth, if there is a w ∈ N such that for every
G ∈ C we have tw(G) ≤ w. If a class C of graphs is not of bounded treewidth,
we say that it is of unbounded treewidth.

Definition 5.4. Let G = (V,E) and H = (H,F ) be graphs. A minor map from
H to G is a mapping µ : H → 2V with the following properties:

(1) For every v ∈ H the set µ(v) is nonempty and connected in G.
(2) For all v, w ∈ H with v 6= w we have µ(v) ∩ µ(w) = ∅.
(3) For all {v, w} ∈ F there are x ∈ µ(v) and y ∈ µ(w) such that {x, y} ∈ E.

We say that µ is onto if
⋃

v∈H µ(v) = V .
Furthermore, H is called a minor of G if and only if there is a minor map from
H to G.

Note that ”minor map” and ”tree-decomposition” are notions that are defined
exclusively for graphs. To obtain the corresponding notions for digraphs, we
regard the graphs underlying these digraphs. Let G = (V,E) be a digraph and
define G∗ = (V,E∗) with E∗ := {{u, v} | (u, v) ∈ E}. We call G∗ the graph
underlying G. Then, minor maps and tree-decompositions for digraphs G and H
are defined as minor maps and tree-decompositions for the underlying graphs.

The (k × l) grid is a graph G = ([k]× [l], E) with

E := {{(i, j), (i′, j′)} | (i, j), (i′, j′) ∈ [k]× [l], |i− i′|+ |j − j′| = 1}

Grids play a central role in a deep theorem from graph minor theory. This so-
called ”Excluded Grid Theorem” will be needed in the following. As its proof is
far beyond the scope of this work, we state it without proof.

Theorem 5.5 (Excluded Grid Theorem). There is a computable function
w : N→ N such that the (k × k) grid is a minor of every graph of treewidth at
least w(k).

5.1.1. Proving the Complexity

Theorem 5.6 (Dalmau, Jonsson). If C is a recursively enumerable class of
digraphs of unbounded treewidth, then p-#Hom(C) is #A[1]-hard under fpt Tur-
ing reductions.
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The proof given in [DJ04] relies on a construction by Grohe [FG06] who showed
the analogous result for decision problems. We outline the construction and the
proof, as some details of it are needed later on.

Let A = (A,EA) be a connected digraph. Furthermore, let k ≥ 2, l :=
(
k
2

)
and

µ : [k]× [l]→ 2A a minor map from the (k × l) grid onto A.

Fix a bijection β : [l]→ (
[k]
2

)
.

Let G = (V,E) be a graph. We define a digraph B = B(A, µ,G) := (B,EB) by

B := {(v, e, i, p, a) ∈ V × E × [k]× [l]×A | (v ∈ e↔ i ∈ β(p)), a ∈ µ((i, p))}.
Define a projection Π : B → A by Π(v, e, i, p, a) := a for all (v, e, i, p, a) ∈ B. The
edge relation EB is constructed such that Π is a homomorphism from B to A:

For all edges (a1, a2) ∈ EA, EB contains all tuples (b1, b2) ∈ Π−1((a1, a2)) with
b1 = (v, e, i, p, a1) and b2 = (v′, e′, i′, p′, a2) such that:

(C1) if i = i′ then v = v′

(C2) if p = p′ then e = e′.

By the definition of Π it is easily observable that Π is a homomorphism from B
to A.

The proof of theorem 5.6 uses the following lemma. Its proof can be found in
[DJ04].

Lemma 5.7. The number of homomorphisms h from A to B such that Π◦h = id
equals the number of k cliques in G multiplied by k!.

We are now able to comprehend the proof of the theorem.

Proof (of theorem 5.6). To prove the theorem it suffices to show that p-#Clique
is fpt Turing reducible to p-#Hom(C) with C being a recursively enumerable
class of digraphs of unbounded treewidth.

Let (G, k) be an instance of p-#Clique. We may assume that k ≥ 2, and let
l :=

(
k
2

)
. By the Excluded Grid Theorem, there is someA ∈ C such that the (k×l)

grid is a minor of A. With C being recursively enumerable, we can enumerate
the elements of C until an appropriate A = A(k) is found. That is, there is a
minor map µ : [k]× [l]→ A from the (k × l) grid to A.

Let A1, . . . ,Am be a list of all connected components of A and assume w.l.o.g.
that µ is onto A1. Furthermore, let B = B(A, µ,G) and Π be defined as above.

Define N to be the set of homomorphisms h from A1 to B with Π ◦ h = id.
Note that, by lemma 5.7, we have #clique(G, k) · k! = |N|. Therefore, we
have to show how to compute |N|. To achieve this, we construct a digraph
D = (D,ED) := B ∪̇ A2 ∪̇ . . . ∪̇ Am.

Furthermore, we define a function Γ : D → A by

Γ(c) :=
{

Π(c) , if c ∈ B
c , otherwise

It is easy to see that Γ defines a homomorphism from D to A.
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Let N′ be the set of homomorphisms h from A to D satisfying (Γ ◦ h)(A) = A
and define I as the set of all automorphisms of A.

Claim 1. |N′| = |N| · |I|
Proof. First, we show that

N′ = {f ◦ g | f ∈ N, g ∈ I} (5.1)

The backward direction is trivially true. For the forward direction, let h ∈ N′

and define g := Γ ◦ h. Then g and g−1 are automorphisms of A. Furthermore
h ◦ g−1 is a homomorphism from A to D and Γ ◦ h ◦ g−1 = g ◦ g−1 = id. Thus
h ◦ g−1 ∈ N and with h ◦ g−1 ◦ g = h the proof of equation (5.1) is done.

To complete the proof of the claim, note that for every f, f ′ ∈ N and g, g′ ∈ I we
have that if either f 6= f ′ or g 6= g′ then f ◦ g 6= f ′ ◦ g′. Thus, the claim follows.√

As I depends only on A, the value of |I| can be computed efficiently. Therefore,
to complete the proof of the theorem we need to show how to compute |N′|.
Let S ⊆ A and define mS as the number of homomorphisms h from A to D such
that (Γ ◦ h)(A) ⊆ S. Let D|Γ−1(S) be the induced subgraph of D with vertex
set Γ−1(S), then, clearly, mS equals the number of homomorphisms from A to
D|Γ−1(S). Thus mS can be computed by a call to the p-#Hom(C) oracle with
the instance (A,D|Γ−1(S)).

Finally, the value of |N′| can be computed by the principle of inclusion and
exclusion:

|N′| =
|A|∑

j=0

(−1)j
∑

S⊆A
|S|=j

#hom(A,D|Γ−1(S)) (5.2)
¤

Note that in the proof by Dalmau and Jonsson this reduction was claimed to
be parsimonious, but the application of the principle of inclusion and exclusion
shows that it is not. So we have to stress that this is an fpt Turing reduction.

5.2. Counting Bipartite Cliques is #A[1]-complete

Let C := { ~Kk,l | k, l ∈ N }, to wit, C is the class of all trivially directed bipartite
cliques. This class is easily seen to be of unbounded treewidth. Thus, theorem
5.6 holds for this class. Accordingly, for the given class C, p-#Hom(C) is the
problem of counting homomorphisms of bipartite cliques in arbitrary digraphs.

As we want to study the parameterized complexity of counting bipartite cliques
in bipartite graphs, we have to make sure that the right hand side class of graphs
can be restricted to bipartite digraphs.

Lemma 5.8. Let C be the class of all trivially directed bipartite cliques and D
the class of all trivially directed bipartite graphs. Then p-#Hom(C,D) is #A[1]-
hard.
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Proof. Note that, in the proof of theorem 5.6, for an A ∈ C a graph B = (A, µ,G)
is constructed. This graph is bipartite, as A is bipartite and trivially directed
because A is. This is true, because the function Π is a homomorphism from B to
A.

Furthermore, as all A ∈ C are connected the graph D constructed in the proof is
identical to B. And with all induced subgraphs of D being bipartite as well the
oracle calls in equation (5.2) are valid for a p-#Hom(C,D) oracle. ¤

Let B = (U,W,E) be a bipartite graph and call U the first part and W the
second part of B. For a function f : A → B let im(f) denote the image of f .
For a homomorphism h from a bipartite graph B = (U,W,E) to any graph, call
im1(h) = {y |h(u) = y, u ∈ U} the image of the first part under h and define
im2(h) analogously for the second part.

Before we can do the final reduction to obtain the desired result about the com-
plexity of p-#BipartiteClique we perform some intermediate steps. For the
first step consider the following problem:

p-#DiBipartiteClique

Instance: A trivially directed bipartite graph B = (U,W,F ) and
k, l ∈ N

Parameter: k, l
Problem: Compute the number of ~Kk,l in B

Call an r-tuple ā = (a1, . . . , ar) ∈ [k]r an r-part partition of k ∈ N, or shortly a
(k, r)-partition, if

r∑

i=1

ai = k.

Let P (k, r) denote the set of all (k, r)-partitions. Observe that the cardinality of
P (k, r) depends only on k and r.

Lemma 5.9. Let C be the class of all trivially directed bipartite cliques and D
the class of all trivially directed bipartite graphs. Then

p-#Hom(C,D) ≤fpt−T p-#DiBipartiteClique

Proof. Let (~Kk,l,B) be an instance of p-#Hom(C,D) with B = (U,W,E). We
have to show how to compute |HOM(~Kk,l,B)| using a p-#DiBipartiteClique
oracle.

For r ∈ [k] and s ∈ [l] define

Tr,s := {h ∈ HOM(~Kk,l,B) : |im1(h)| = r ∧ |im2(h)| = s}

Clearly, for any homomorphism h from ~Kk,l to B there are unique r ∈ [k] and
s ∈ [l] such that h ∈ Tr,s. Thus the following observation holds.
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Observation. The family {Tr,s | r ∈ [k], s ∈ [l]} is a partition of HOM(Kk,l,B).

This directly implies:

|HOM(~Kk,l,B)| =
∑

r∈[k],
s∈[l]

|Tr,s| (5.3)

As there are k · l different classes Tr,s we can compute |HOM(~Kk,l,B)| in fpt
time if we can compute |Tr,s| for every r ∈ [k] and s ∈ [l] in fpt time. Hence to
complete the proof, we need to show how to determine |Tr,s|.
Fix r ∈ [k], s ∈ [l] and let h ∈ Tr,s. Note that the image of h is some bipartite
clique ~KBr,s = (UBr ,WB

s , U
B
r ×WB

s ) in B. Note furthermore, that as all graphs here
are trivially directed, under every homomorphism the first part of ~Kk,l always
maps to the first part of B and the same holds for the second parts.

W.l.o.g. let UBr = {u1, . . . , ur} and WB
s = {w1, . . . , ws}. For all i ∈ [r] define

yi = |h−1(ui)|. (5.4)

and for all j ∈ [s]
zj = |h−1(wj)|. (5.5)

Hence, for every g ∈ Tr,s there are unique ȳ = (y1, . . . , yr) and z̄ = (z1, . . . , zs)
that satisfy equations (5.4) and (5.5). Observe that by these equations we have
ȳ ∈ P (k, r) and z̄ ∈ P (l, s).

Let Tr,s(ȳ, z̄) ⊆ Tr,s denote the set of homomorphisms g ∈ Tr,s that are repre-
sented by ȳ and z̄ via the above mentioned correspondence.

Thus, we can derive another observation

Observation. The family {Tr,s(ȳ, z̄) | ȳ ∈ P (k, r), z̄ ∈ P (l, s)} is a partition of
Tr,s.

which implies

|Tr,s| =
∑

ȳ∈P (k,r),
z̄∈P (l,s)

|Tr,s(ȳ, z̄)| (5.6)

As it is easy to see that there is a computable function f : N× N→ N such that
|P (k, r)| = f(k, r) and |P (l, s)| = f(l, s) the proof is complete if we can show how
to compute |Tr,s(ȳ, z̄)| for ȳ ∈ P (k, r) and z̄ ∈ P (l, s).

Let ȳ = (y1, . . . , yr) ∈ P (k, r) and z̄ = (z1, . . . , zs) ∈ P (l, s) and for i ∈ [r] define

σi :=
i−1∑

j=1

yj .

Analogously, for i ∈ [s] define

τi :=
i−1∑

j=1

zj .

Let cr,s denote the number of trivially directed bipartite cliques ~Kr,s in B.
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Claim 1. For ȳ = (y1, . . . , yr) ∈ P (k, r) and z̄ = (z1, . . . , zs) ∈ P (l, s) we have

|Tr,s(ȳ, z̄)| = cr,s ·
r∏

i=1

(
k − σi

yi

)
·

s∏

i=1

(
l − τi
zi

)
. (5.7)

Proof. The first factor cr,s on the right hand side accounts for the easily observ-
able fact that for every copy of ~Kr,s in B the number of homomorphisms from
~Kk,l to this copy of ~Kr,s is the same. Hence we may consider the homomor-
phisms in Tr,s(ȳ, z̄) independently of their actual image in B, that is, we regard
all homomorphisms g ∈ Tr,s(ȳ, z̄) as mappings from ~Kk,l = ([k], [l], [k] × [l]) to
~Kr,s = ([r], [s], [r]× [s]).

Thus creating these homomorphisms g ∈ Tr,s(ȳ, z̄) can be modelled in two steps.

Firstly, mapping [l] to [s] is modelled by putting l balls into s bins with sizes
z1, . . . , zs. This contributes the last product of the above mentioned term.

Secondly, mapping [k] to [r] can be modelled analogously by k balls and r bins of
sizes y1, . . . , yr. This contributes the last but one product above. √

Consider the right hand side of equation (5.7). Except for the value cr,s all values
depend only on k and l and can be computed in time bounded by some function
of these parameters. For every r ∈ [k] and s ∈ [l] the value cr,s can be computed
via an oracle call. This completes the proof. ¤

Before we do the final reduction, we introduce yet another problem.

p-#DiSymmBipartiteClique

Instance: A trivially directed bipartite graph B = (U,W,F ) and k ∈ N
Parameter: k
Problem: Compute the number of ~Kk,k in B

Lemma 5.10. p-#DiBipartiteClique ≤fpt−T p-#DiSymmBipartiteClique

Proof. Let (B, k, l) with B = (U,W,F ) be an instance of p-#DiBipartiteClique.
As the case that k = l is trivial and the cases k < l and k > l can be handled
symmetrically, it suffices to give a proof for k > l.

We define a graph Bm = (U,Wm, Fm) by

Wm := W ∪̇ {w1, . . . , wm}
Fm := F ∪ {(u,wj) | j ∈ [m], u ∈ U}

Set B0 := B and let xr,s denote the number of ~Kr,s in B. Define ck(m) as the
number of ~Kk,k in Bm. Then we can easily derive the following correspondence:

ck(m) = xk,k +
m∑

j=1

(
m

j

)
xk,k−j
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Define aij :=
(

i
j

)
. For m = 0, . . . , k − l we obtain the following system of linear

equations:




ck(0)
ck(1)

...
ck(k − l)


 =




a11 0 . . . 0
a21 a22 . . . 0

...
. . .

a(k−l)1 a(k−l)2 . . . a(k−l)(k−l)


 ·




xk,k
...
xk,l




Note that for j > i we have
(

i
j

)
= 0 = aij and for 1 ≤ j ≤ i we have

(
i
j

)
= aij > 0

therefore the matrix above is lower triangular. Hence, we can obtain the value
xk,l by solving this system of linear equations. ¤

Theorem 5.11. p-#BipartiteClique is #A[1]-complete under fpt Turing re-
ductions.

The theorem follows by three simple lemmas which utilize the problem of counting
symmetric bipartite cliques.

p-#SymmetricBipartiteClique

Instance: A bipartite graph B = (U,W,F ) and k ∈ N
Parameter: k
Problem: Compute the number of Kk,k in B

Lemma 5.12.

p-#DiSymmBipartiteClique ≤fpt p-#SymmetricBipartiteClique

Proof. For an instance (B, k) with B = (U,W,F ) of p-#DiSymmBipartiteClique
define B∗ = (U,W,F ∗) with F ∗ = {{u,w} | (u,w) ∈ F}. It is easy to see that the
number of ~Kk,k in B equals the number of Kk,k in B∗. ¤

Lemma 5.13. p-#SymmetricBipartiteClique ≤fpt p-#BipartiteClique

Proof. This is almost trivial by the mapping (B, k) 7→ (B, k, k) for an instance
(B, k) of p-#SymmetricBipartiteClique. ¤

Lemma 5.14. p-#BipartiteClique ∈ #A[1].

Proof. Let (B, k, l) with B = (U,W,F ) be an instance of p-#BipartiteClique.
We shall give an fpt-T! reduction to p-#MC(Π0).

Define a structure A = (A,RA) with ar(R) = 2, A := U ∪W and

RA := {(u,w) |u ∈ U, w ∈W, {u,w} ∈ F}.
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Chapter 5. Bipartite Cliques

Define

ϕ(x1, . . . , xk, y1, . . . , yl) :=
∧

1≤i<j≤k

(xi 6= xj) ∧
∧

1≤i<j≤l

(yi 6= yj)

∧

 ∧

1≤i≤k

∧

1≤j≤l

Rxiyj ∨
∧

1≤i≤k

∧

1≤j≤l

Ryjxi




One can easily see that |ϕ(A)| equals the number of Kk,l in B times a factor of
k!l!. We can correct this factor after the oracle call to obtain the desired value.¤

Observe that lemma 5.13 and lemma 5.14 together imply the containment of
p-#SymmetricBipartiteClique in #A[1] and hence this problem is #A[1]-
complete under parameterized Turing reductions.
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Chapter 6.

Counting Induced Cycles and Paths

In [FG06] Flum and Grohe have shown that counting cycles and paths is #A[1]-
complete under fpt Turing reductions. In this chapter, we will show the analogous
results for induced cycles and paths.

We define Ck as the cycle on k vertices that is Ck = ([k], E) with

E := {{i, j} | j ≡ i+ 1 (mod k), i, j ∈ [k]}.

Recall that for a graph G = (V,E) and a set of vertices U ⊆ V the subgraph of G
induced by U is defined as G|U = (U,E ∩ (

U
2

)
).

The problem we are interested in is defined as follows:

p-#InducedCycle

Instance: A graph G = (V,E), k ∈ N
Parameter: k
Problem: Compute the number of induced subgraphs in G that are

isomorphic to Ck

For a graph G = (V,E) its complement is defined by Gc = (V,
(
V
2

) \ E). Hence,
by Cc

k we denote the complement of the cycle on k vertices.

We will demonstrate the #A[1]-hardness of p-#InducedCycle by means of its
connection to the following problem.

p-#InducedCycleComplement

Instance: A graph G = (V,E), k ∈ N
Parameter: k
Problem: Compute the number of induced subgraphs in G that are

isomorphic to Cc
k

Lemma 6.1. p-#InducedCycle ≡fpt p-#InducedCycleComplement

Proof. The bijective mapping (G, k) 7→ (Gc, k) satisfies this. ¤

As we are dealing with complements Cc
k of cycles it will be convenient to consider

cyclic orders on the vertices of these complements. A cyclic order of a set S of
cardinality k is defined by a function σ : S → S satisfying:

71



Chapter 6. Counting Induced Cycles and Paths

• For each x ∈ S, by defining x+0 := x and x+i+1 := σ(x+i), we have

S = {x+0, x+1, . . . , x+k−1} and x = σ(x+k−1).

Functions of this type are called successor functions. We consider cyclic orders
exclusively by means of their successor function. In fact, we will treat them inter-
changeably. Hence, we say that two cyclic orders are identical if their successor
functions are identical and they are inverse if their corresponding successor func-
tions σ and τ satisfy σ−1 = τ . Somewhat sloppily, we say that two elements
x, y ∈ S are successors if x = σ(y) or y = σ(x).

Note that there are (k − 1)! cyclic orders on a set of cardinality k. Furthermore,
for a complement Cc

k = ([k], Ē) of a cycle Ck = ([k], E) there are exactly two
successor functions σ and σ−1, such that for every x ∈ [k] we have {x+i, x+j} ∈ E
if, and only if, j− i ≡ 1 (modk). In this case, we say that σ and its inverse define
Cc

k (and Ck).
Lemma 6.2. p-#Clique ≤fpt−T p-#InducedCycleComplement

Proof. Let (G, k) with G = (V,E) be an instance of p-#Clique. As the case
k ≤ 2 is trivial, we may assume that k > 2.

We construct a Graph G′ = (V ∪̇W,E ∪ F ) where:

W := {xe | e ∈ E}
F :=

(
W

2

)
∪ {{v, xe} | v ∈ V, xe ∈W, v /∈ e}

Observe that the newly added vertices form a clique and each xe ∈W satisfies

N(xe) ∩ V = V \ e. (6.1)

Let za,i denote the number of sets C which induce a copy of Cc
a in G′ such that

|C ∩ V | = a− i and |C ∩W | = i.

Claim 1. The number of k-cliques in G equals
2

(k − 1)!
· z2k,k.

Proof. For the forward direction, let K be a set of vertices that induces a k-
clique in G. Let τ be a cyclic order on K and let v ∈ K, we consider K =
{v+0, . . . , v+k−1}.
By equation (6.1) there is, for each edge ei = {v+i, v+j} with j ≡ i+ 1 (mod k),
exactly one vertex xe ∈W that is adjacent to all vertices in K except for v+i and
v+j . Thus for the set C := {v+0, xe0 , v+1, . . . , xek−2

, v+k−1, xek−1
} the function

σ : C → C defined by

σ(v) :=
{
xei , if v = v+i ∈ K
v+j , if v = xei , i ∈ [k], j ≡ i+ 1 (mod k)

(6.2)

defines a copy of Cc
2k in G′. Furthermore, each cyclic order of K and its inverse

induce the same Cc
2k in G′.
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For the backward direction, let C with |C ∩W | = k induce a copy of Cc
2k in G′.

Hence, there is a cyclic order σ on the vertices in C such that two vertices x, y ∈ C
are not adjacent iff they are successors in σ. As all vertices x, y ∈W are adjacent,
this implies that they may not be successors in the order. Let v ∈ C ∩V , then we
have that two vertices x, y ∈ C ∩ V = {v+0, v+2, . . . , v+2(k−1)}, are not successors
in σ. Thus C ∩ V forms a k-clique in G′ and hence in G. √

By this claim, it suffices to show how to obtain the value z2k,k. In order to do
this, we define the graph Gm = (V ∪̇Wm, E ∪ Fm) with

Wm := W × [m]

Fm :=
(
Wm

2

)
∪ {{v, (xe, j)} | v ∈ V, xe ∈W, j ∈ [m], v /∈ e}

Furthermore, we define a projection π : V ∪̇Wm → V ∪̇W that maps vertices in
Gm to vertices in G′:

π(v) :=
{
v , if v ∈ V
y , if v = (y, i) ∈Wm

(6.3)

Likewise, for every set of vertices C ⊆ V ∪̇Wm we define its projection by

π(C) := {π(v) | v ∈ C}.

Claim 2. Let C induce a copy of Cc
2k in Gm then π(C) induces a copy of Cc

2k in
G′.

Proof. Note that, by the construction of Gm it suffices to show that |C| = |π(C)|.
Assume for contradiction that C contains a pair of vertices (y, i) , (y, j) ∈ Wm

with i 6= j. This implies that π(y, i) = π(y, j) = y.

Consider a cyclic order σ on the vertices of C that defines this copy of Cc
2k in Gm.

Then we can assume that

C = {v+0, . . . , v+a−1, v+a, v+a+1, . . . , v+b−1, v+b, v+b+1, . . . , v+2k−1}

for a v ∈ S such that v+a = (y, i) and v+b = (y, j). Note that, as σ defines the
cycle complement, we have that {v+a−1, v+a+1, v+b−1, v+b+1} ⊆ V . k ≥ 3 implies
that either v+a+1 6= v+b−1 or v+a−1 6= v+b+1 holds.

Let v+a+1 6= v+b−1 and assume that y = xe for e = {v+b−1, v+b+1}. Then v+a =
(y, i) is adjacent to v+a+1 in contradiction to our assumption that σ defined the
cycle complement.

The other cases are analogous. √

Claim 3. Let C induce a copy of Cc
2k in G with |C ∩W | = i. Then there are mi

sets D in Gm with π(D) = C which induce a copy of Cc
2k in Gm.
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Proof. Let C be as above and let v ∈ C ∩W by the definition of π there are m
distinct vertices in w ∈ Wm with π(w) = v. As this holds independently for all
of the i vertices in C ∩W , the claim follows. √

Claim 4. For every set of vertices C that induces a copy of Cc
2k in Gm we have

|C ∩Wm| ≤ k.

To see this, observe that if |C ∩ Wm| > k then in every cyclic order of the
vertices in C at least two vertices x, y ∈ C ∩Wm are successors. By the definition
of Gm, {x, y} is a edge in Fm. Thus, C is not an induced cycle complement.
Contradiction.

Define c(2k,m) as the number of Cc
2k in Gm and note that claim 4 implies z2k,j = 0

for all j > k. Together with claims 2 and 3 we immediately obtain:

c(2k,m) =
k∑

i=0

z2k,i ·mi (6.4)

This is a system of linear equations and if we consider all m ∈ [k], we obtain




c(2k, 1)
...

c(2k, k)


 =




11 12 . . . 1k

...
k1 k2 . . . kk


 ·




z2k,1
...

z2k,k




The matrix of our system of linear equations is the transpose of a Vandermonde
matrix. As Vandermonde matrices are well-known to be non-singular, we can
obtain its inverse and thus, compute all values z2k,i for i ∈ [k]. ¤

Corollary 6.3. The problem p-#InducedCycle is #A[1]-hard under fpt Tur-
ing reductions.

Define Pk := ([k+1], {{i, j} | i, j ∈ [k+1] ∧ j− i = 1}) as the path of length k.

p-#InducedPath

Instance: A graph G = (V,E), k ∈ N
Parameter: k
Problem: Compute the number of induced copies of Pk in G

To prove the hardness, we show that a result from [FG06] (Lemma 14.33) for the
not necessarily induced case can be adapted without much effort.

Lemma 6.4. p-#InducedCycle ≤fpt−T p-#InducedPath

Proof. Consider the following problem:
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p-#InducedCycleThroughEdge

Instance: A graph G = (V,E), an edge e ∈ E,k ∈ N
Parameter: k
Problem: Compute the number of induced copies of Ck in G that contain

the edge e

We show first that the following holds

p-#InducedCycle ≤fpt−T p-#InducedCycleThroughEdge

Let (G, k) be an instance of p-#InducedCycle with G = (V,E). An algo-
rithm witnessing the reduction chooses an e ∈ E arbitrarily. By an oracle call
to p-#InducedCycleThroughEdge it computes the number z1 of length k
induced cycles containing e. Then, recursively the number z2 of length k induced
cycles in (V,E \ {e}) is computed. Thus the number of induced cycles of length
k in G is z1 + z2.

Now, the proof is complete if we can show that

p-#InducedCycleThroughEdge ≤fpt−T p-#InducedPath

holds. Consider an instance consisting of G = (V,E), e = {u,w} ∈ E and k ∈ N.
Furthermore, we assume that k ≥ 3.

We define a graph Ge(l,m) = (Vl,m, El,m) as follows:

Vl,m := V ∪̇ {v1, . . . , vl} ∪̇ {w1, . . . , wm}
El,m := E \ {e} ∪ {{v, wj} | j ∈ [m]} ∪ {{w, vi} | i ∈ [l]}

Note that in Ge(l,m) the newly added vertices can only be endpoints of paths
and as k ≥ 3 each of the sets {v1, . . . , vl} and {w1, . . . , wm} can contain only one
endpoint of a length k path.

Furthermore, as e is not contained in Ge(l,m) induced paths of length k+ 1 with
both endpoints among the vi and wj correspond to induced cycles of length k in
G. Thus in Ge(1, 1) the number of induced paths of length k + 1 that have as
endpoints v1 and w1 equals the number of length k induced cycles in G.
Define, for paths of length k + 1 in Ge(1, 1):

• x1 as the number of induced paths with endpoints v1, w1

• x2 as the number of induced paths that contain v1 but not w1

• x3 as the number of induced paths that contain w1 but not v1
• x4 as the number of induced paths that contain neither w1 nor v1

Let yl,m be the number of length k+1 induced paths in Ge(l,m). Hence, we have

yl,m = l ·m · x1 + l · x2 +m · x3 + x4
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and for 0 ≤ l,m ≤ 1 we obtain the following system of linear equations:



y0,0

y0,1

y1,0

y1,1


 =




0 0 0 1
0 0 1 1
0 1 0 1
1 1 1 1


 ·




x1

x2

x3

x4




with a nonsingular matrix and hence, we can obtain the desired value x1. ¤

Lemma 6.5. p-#InducedPath and p-#InducedCycle are contained in #A[1].

Proof. Let G = (V,E) and k ∈ N. We assume that k ≥ 3 and define a struc-
ture A := (V,E,≤A) with a total order ≤A on V . We show how to reduce
p-#InducedCycle with a single oracle call to p-#MC(Π0). Consider the Π0

formula:

χk(x1, . . . , xk) :=
∧

1≤i<j≤k

xi 6= xj

∧
∧

i,j∈[k]
j≡i+1 (mod k)

Exixj ∧
∧

i,j∈[k]
¬j≡i+1 (mod k)

¬Exixj

It is easy to see that we have v̄ = (v1, . . . , vk) ∈ χk(A) for all tuples that, in this
order, induce a cycle in G. Note that this would not directly yield a parsimonious
reduction as there are always 2k tuples inducing the same cycle. For our fpt-T!
reduction, however, it suffices to note that we can correct this value by a simple
integer division after the oracle call.

For p-#InducedPath the proof is analogous. ¤
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Chapter 7.

A Digression: Further Tractability Results

In the remainder of this thesis we will make an effort to summarize some clas-
sification results from parameterized counting complexity and compare them to
their analogs in classical complexity. This summary will be given in the following
chapter. In this chapter we will mainly discuss some further tractability results
that will prove illustrative later on.

In [Fri01] an fpt algorithm was given for counting independent tuples in digraphs
with low degree. However, an explicit time bound for this algorithm was not
mentioned there. We will see how the algorithm can be applied to counting
independent sets in undirected graphs and the time bound of this algorithm will
be given.

As we are acquainted with cliques, we can define independent sets via their con-
nection to cliques. Given a graph G = (V,E), a set S ⊆ V is an independent set
in G if and only if it induces a clique in Gc (where Gc is the edge-complement of
G).
First note the definition of the counting independent set problem, considered
here:

p-∆-#IndependentSet

Instance: A graph G = (V,E) and k ∈ N
Parameter: k + ∆(G)
Problem: Compute the number of independent sets of size k in G

In the same manner as for vertex cover and hitting set, let #is(G, k) denote the
number of independent sets of cardinality k in G.
We need some new notation. For two graphs A = (V,E) and B = (V, F ) with the
same vertex set we write A ⊂ B if E ⊂ F , i.e. if E is a proper subset of F .

Furthermore, given a graph G = (V,E) we define the r-neighborhood of a vertex
v ∈ V inductively:

N1
G(v) := NG(v) ∪ {v}

N i+1
G (v) :=

⋃

w∈N i
G(v)

NG(w)

Theorem 7.1. p-∆-#IndependentSet is fixed parameter tractable. More pre-
cisely, there is an algorithm that solves p-∆-#IndependentSet in time

O(k4 · (2 · (d+ 1))k2 · |V |+ 22k2
).
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Proof. Given an instance (G, k) of p-∆-#IndependentSet with G = (V,E),
k ∈ N and ∆(G) = d. Assume w.l.o.g. that V = {v1, . . . , vn}. We define a
digraph ~G = (V, ~E) by

~E := {(vi, vj) | {vi, vj} ∈ E ∧ i, j ∈ [n] : i < j} ∪ {(v, v) | v ∈ V }.

Note that we have ∆(~G) = d+ 1 and ~G can be computed in time O((d+ 1) · |V |).
Let Γk = {γ0, . . . , γm} be the set of all digraphs with self-loops allowed and
with vertex set [k], where γ0 = ([k], ∅) denotes the empty graph. For a digraph
H = ([k], F ), we define the sets

Hom(H) := {v̄ = (v1, . . . , vk) ∈ V k | ∀ i, j ∈ [k] : (i, j) ∈ F ⇒ (vi, vj) ∈ ~E}

and

StHom(H) := {v̄ = (v1, . . . , vk) ∈ V k | ∀ i, j ∈ [k] : (i, j) ∈ F ⇔ (vi, vj) ∈ ~E}

and let hH := |Hom(H)| and sH := |StHom(H)|.
Intuitively, Hom(H) is the set of all tuples that define homomorphisms from H
to ~G and analogously elements of StHom(H) define strong homomorphisms from
H to ~G.
As ~G contains a self-loop for every v ∈ V the value sγ0 equals the number of
k-tuples v̄ = (v1, . . . , vk) that are independent in such a way that {v1, . . . , vk} is
an independent set of cardinality exactly k in ~G. This implies

#is(G, k) =
1
k!
· sγ0 (7.1)

Thus we have to show how sγ0 can be computed.

Claim 1. Given a digraph γ ∈ Γk and ~G = (V, ~E) as above, then for every tuple
v̄ = (v1, . . . , vk) ∈ V k the following holds:

v̄ ∈ StHom(γ) ⇔ v̄ ∈ Hom(γ) ∧
∧

γ′∈Γk
γ′⊃γ

v̄ /∈ Hom(γ′) (7.2)

Proof. For the forward direction, let v̄ ∈ StHom(γ) for γ = ([k], F ) ∈ Γk. Then
v̄ ∈ Hom(γ) is true by definition, but assume, for contradiction, that there is
a γ′ = ([k], F ′) ∈ Γk with γ ⊂ γ′ and v̄ ∈ Hom(γ′). Thus there is an edge
e = (i, j) ∈ F ′ \ F such that (vi, vj) ∈ ~E. But as v̄ ∈ StHom(γ) and e /∈ F we
have (vi, vj) /∈ ~E.

The backward direction is analogous. √

Observe that this claim implies that

StHom(γ) = Hom(γ) \ (
⋃

γ′∈Γk
γ′⊃γ

Hom(γ′))
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Furthermore it is easy to see that for a γ ∈ Γk we have
⋃

γ′∈Γk
γ′⊃γ

StHom(γ′) =
⋃

γ′∈Γk
γ′⊃γ

Hom(γ′)

and hence
StHom(γ) = Hom(γ) \ (

⋃

γ′∈Γk
γ′⊃γ

StHom(γ′)) (7.3)

Furthermore, for two distinct graphs η, θ ∈ Γk we have

StHom(η) ∩ StHom(θ) = ∅.
And if η ⊂ θ then Hom(η) ⊃ Hom(θ) ⊇ StHom(θ). These two facts follow
directly from the definitions of the corresponding sets. Hence, in combination
with equation (7.3) we obtain the following equation which holds for all γ ∈ Γk:

sγ = hγ −
∑

γ′∈Γk
γ′⊃γ

sγ′ (7.4)

This entails a way of computing the desired value sγ0 which is described by algo-
rithm 8.

cardStHomγ0(~G, k)
// ~G = (V, ~E) a digraph, k ∈ N
// calculate a table of the values hε for all ε ∈ Γk

forall ε ∈ Γk do1

hε ← |Hom(ε)|;2

end3

// compute a table of the values sε for all ε ∈ Γk

for l = k2 downto 0 do4

forall ε = ([k], Eε) ∈ Γk with |Eε| = l do5

sε ← hε −
∑

ε′⊃ ε sε′ ;6

end7

end8

return sγ0 ;9

Algorithm 8: Computing the value sγ0

Time Complexity. Let t denote the time needed to compute the value hγ for a
γ ∈ Γk. We will determine the exact value of t later.

Consider the first for-loop in algorithm 8. As there are 2k2
digraphs with vertex

set [k] and each one of them can be constructed in time at most O(k2), this loop
completes in time at most O(k2 · 2k2 · t).
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Chapter 7. A Digression

For the second for-loop fix l and let x := k2 then there are
(
x
l

)
graphs to be

enumerated. Each one can be constructed in at most l ≤ k2 steps. For the
expression in line 6 of the algorithm, note that there are at most

∑x
i=l

(
x
i

)
graphs

that play a part in the sum.

Thus for the second loop on all values of l we have time at most

x∑

l=0

(
x

l

)
· (k2 +

x∑

i=l

(
x

i

)
) = k2 ·

x∑

l=0

(
x

l

)
+

x∑

l=0

(
x

l

) x∑

i=l

(
x

i

)

= k2 · 2x +
x∑

l=0

(
x

l

) x∑

i=l

(
x

i

)

≤ k2 · 2x + 22x

∈ O(22k2
)

Thus with the first loop and x = k2 the algorithm completes in time

O(k2 · 2k2 · t+ 22k2
).

We still have to show how to compute the values hγ . First, we stress that, if γ
consists of the connected components ε1, . . . εr then we have hγ = hε1 · . . . · hεr .
Hence, we may assume that γ is connected.

Consider a k-tuple v̄ = (v1, . . . , vk) and let V (v̄) := {v1, . . . , vk} then for a con-
nected graph γ we know that v̄ ∈ Hom(γ) holds only if ~G|V (v̄) (i.e. the subgraph
of ~G induced by V (v̄)), is connected as well. This implies that we can systemat-
ically find all k-tuples v̄ ∈ Hom(γ) by enumerating for the first entry v1 of v̄ all
v ∈ V . Then for each case v1 = v for the other k− 1 entries of v̄ we know, by the
connectedness of ~G|V (v̄), that {v2, . . . , vk} ⊆ Nk−1

~G (v). As ~G has maximum degree
d+ 1 we have

|Nk−1
~G (v)| ≤ (d+ 1)k−1.

Thus, via a brute force algorithm, all tuples that are possibly contained inHom(γ)
can be generated in time O(|V | · ((d + 1)k)k) and as, for a given tuple v̄ ∈ V k

determining v̄ ∈ Hom(γ) can be done in time O(k2), we have

t ∈ O(|V | · k2 · (d+ 1)k2
).

Recall that, ~G can be computed from G in time O((d+1) · |V |) and, given sγ0 the
value according to equation (7.1) can be computed in constant time.

Hence, the whole algorithm for solving p-∆-#IndependentSet completes in
time O(k4 · (2 · (d+ 1))k2 · |V |+ 22k2

), as claimed. ¤

Note that by the tight connection of cliques and independent sets, we directly
obtain the fact that the following problem is fixed parameter tractable.

80



7.1. Tractable Cases of Counting Matchings

p-(n− δ)-#Clique

Instance: A graph G = (V,E) and k ∈ N
Parameter: k + |V | − δ(G)
Problem: Compute the number of cliques of size k in G

7.1. Tractable Cases of Counting Matchings

In this section we will discuss some restricted versions of the parameterized prob-
lem of counting matchings. Consider the following problem:

p-∆-#GeneralMatching

Instance: A graph G = (V,E) and k ∈ N
Parameter: k + ∆(G)
Problem: Compute the number of matchings of size k in G

The technique that was applied to show that p-∆-#IndependentSet is fixed pa-
rameter tractable can indeed be applied to show this for many different problems
on graphs of bounded degree, for example, p-∆-#GeneralMatching could be
solved in the same way. However, that this problem is in #FPT can be seen as
well by a very simple reduction.

Theorem 7.2. p-∆-#GeneralMatching is fixed parameter tractable.

Proof. We reduce p-∆-#GeneralMatching to p-∆-#IndependentSet parsi-
moniously.

Let (G, k) be an instance of p-∆-#GeneralMatching with G = (V,E). We
define a graph G′ := (E,F ) with F := { {e, f} | e, f ∈ E and e ∩ f 6= ∅}. This
graph is called the line graph of G.
We show first that 2 ·∆(G) ≥ ∆(G′). This guarantees that the parameter does
not increase too much. Let e in G′ be a vertex with maximum degree. e represents
an edge {u, v} in G. By the construction of G′ we have

dG′(e) ≤ dG(u) + dG(v) ≤ 2 ·∆(G).

To complete the proof of the theorem, we show, that there is a trivial one-to-one
correspondence between matchings in G and independent sets in G′.
Let M be a matching in G. For any e, f ∈ M with e 6= f we have e ∩ f = ∅.
Therefore no two distinct e and f in M are adjacent in G′, that is M is an
independent set in G′.
The backward direction is completely analogous. ¤

Define p-∆-#Matching as the restriction of p-∆-#GeneralMatching to bi-
partite graphs. Clearly, we have
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Corollary 7.3. p-∆-#Matching is fixed parameter tractable.

Let the problems p-#Matching and p-#GeneralMatching denote the coun-
terparts of p-∆-#Matching and p-∆-#GeneralMatching that do not include
∆(G) into the parameter. For these unrestricted problems it is still unknown
whether they are fixed parameter tractable or #A[1]-complete (Note that the
containment in #A[1] is obvious).

Another version of the matching problem that can easily be seen to be in #FPT
is the parametric dual of p-#Matching.

p-#DualOfMatching

Instance: A graph G = (V,E) and k ∈ N
Parameter: k
Problem: Compute the number of matchings of size |E| − k in G

This problem can be seen to be fixed parameter tractable by a reduction to vertex
cover which follows directly from the reduction in theorem 7.2.

Lemma 7.4. p-#DualOfMatching ≤fpt p-#VertexCover

Proof. Let G = (V,E) and k ∈ N be an instance of p-#DualOfMatching.
Again, we construct the linegraph G′ := (E,F ) with F := { {e, f} | e, f ∈
E and e ∩ f 6= ∅}. Then it is easy to see that a set M ⊆ V is a matching of
cardinality |E| − k in G if, and only if, E \M is a size k vertex cover in G′. ¤
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Conclusion

We can summarize the work of this thesis from two different viewpoints. From a
structural perspective, we removed some inconsistencies between certain parame-
terized complexity classes, such as #A[1] and #W[P]. Moreover, the development
of the concept of counting kernelizations strengthened the definition of #FPT, as
these provide a complete characterization of fixed parameter tractable counting
problems.

With a view that is devoted more to the counting problems themselves, one
would emphasize the classification results. Instead of giving an exhaustive list of
the results, we will summarize some of these by comparing them to their analogs
from classical complexity theory. This will provide some intuition about the
differences of these two theories.

Recall that we introduced the complexity classes that were defined by Valiant
(cf. [Val79a]). The class #P comprises all functions that are representable by
the accepting runs of a polynomially bounded nondeterministic Turing machine.
Its deterministic counterpart FP contains all functions that are deterministically
computable in polynomial time. For our purposes these informal definitions suf-
fice.

In his seminal papers [Val79a] and [Val79b] Valiant showed that many problems
such as #VertexCover, #Clique and #Matching are #P complete. These
problems ask for the number of the corresponding structures irrespective of their
size. For example #VertexCover is the problem of counting all vertex covers
in a given graph G. Although the parameterized problems we considered count
only structures of a certain size k, these, namely p-#VertexCover, p-#Clique
and p-#Matching, are their most natural parameterized peers.

Note that any comparison of parameterized complexity classes with classical ones
is by no means trivial. The claim that #FPT is the parameterized analog of FP
is unproblematic, but for the analog of #P a reasonable choice is not as simple.
In this thesis we have considered at least two classes that might be candidates
for this, to wit, #W[P] and #A[1]. With respect to the problems which we will
consider in this chapter, we regard #A[1] as the analog of #P only because all of
these problems are contained in #A[1]. In a more general context, however, this
situation might change such that #W[P] is given pride of place.

We will restrict our discussion to the three problems mentioned above and some of
their restricted variants. These restrictions include the clique problem in graphs of
large minimum degree, for example #2(n−δ)-Clique denotes the clique problem
on graphs G = (V,E) where |V | − δ(G) = 2. Analogously, #4∆-Matching is the
matching problem in bipartite graphs of maximum degree 4.

Table 7.1 summarizes the different classifications of some vertex cover, clique and
matching problems. The classical result for #BipartiteClique was found by
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Classical Problems

#P-hard
#Clique

#BipartiteClique
#Matching

#4∆-Matching
#VertexCover
#5(n− δ)-Clique

#2(n− δ)-Clique
in FP #2∆-Matching

Parameterized Problems

#A[1]-hard
p-#Clique

p-#BipartiteClique

p-#VertexCover
p-(n− δ)-#Clique in #FPT
p-∆-#Matching

p-#DualOfMatching

Table 7.1.: Complexity Classifications of Counting Cliques and Vertex Covers

Provan and Ball (cf. [PB83]), whereas the restricted versions of #clique and
#Matching were classified by Vadhan in [Vad01].

The most eye-catching fact about parameterized complexity is that it renders the
vertex cover problem tractable. As we have seen in the first part of this thesis,
indeed the fixed parameter tractability of many problems is tightly connected to
that of vertex cover.

A closer look, however, reveals some truly interesting details. The reader not fa-
miliar with parameterized complexity might ask why the p-#DualOfMatching
problem is known to be in #FPT whereas p-#Matching has not been classified.
In parameterized complexity, a problem can be of very different complexity if we
consider a parameterization and its dual. For example, it can easily be seen that
the parametric dual of p-#VertexCover is equivalent to p-#IndependentSet.
This is so, because for a vertex cover S in a graph G = (V,E), the set V \S is an
independent set in G. Hence, as p-#IndependentSet is parametrically equiva-
lent to p-#Clique, which is #A[1]-complete, the dual of p-#VertexCover is
#A[1]-complete as well.

Something similar can be observed with the matching problem. The paramet-
ric dual of the matching problem p-#DualOfMatching is fixed parameter
tractable, whereas this is unknown for p-#Matching itself and it has been con-
jectured (cf. [FG06]) that this problem is #A[1]-complete.

Another fact that is unique to parameterized complexity is revealed by the re-
stricted problems given in table 7.1. Note that the restrictions of the matching
problem to bounded degree graphs, namely #c∆-Matching for a constant c are
subject to a dichotomy, insofar as for c ≤ 2 the problem is efficiently solvable,
whereas for c ≥ 5 it is #P hard. Contrarily, the analogous parameterized prob-
lem p-∆-#Matching is in #FPT irrespective of the value of ∆. Note that this
problem includes ∆ into the parameter instead of keeping it constant but this
implies that, if ∆ would be constant, the fixed parameter tractability would still
be given. Similar results hold for #c(n− δ)-Clique and p-(n− δ)-#Clique.

These problems reveal a property of parameterized problems which can be ob-
served directly by the definition of fixed parameter tractability, that is, the notion
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Guidelines For Future Research

of the parameter is a unifying scheme, as containment in #FPT is given irre-
spective of the actual parameter value. Therefore, in parameterized complexity
restricted case analysis will reveal no dichotomies as long as the restrictions are
expressed in terms of the parameter.

Guidelines For Future Research

There are a lot of questions that formed during the work on this thesis. We will
conclude in giving a short impression about some of these.

Are the counting problems corresponding to p-SetSplitting (for a definition see
[DFRS04]) and p-DisjointTriangle (cf. [MPS04]) solvable by some extension
of the crown rule? If not, maybe some other algorithms not known to the author
that solve p-SetSplitting or p-DisjointTriangle without applying crowns
can be adapted easily to solve the corresponding counting problems.

It is not clear if the definition of extremal versions of parameterized counting
problems is reasonable. At least problems asking for optimal soultions, such
as p-#MinimumVertexCover, might be of interest as either the optimum is
smaller than k and hence we count all solutions, or no optimal solution is found
at all. In the case of structures that are minimal or maximal (with respect to
inclusion) this seems not as reasonable. However, it would be interesting if the
definition of a problem like p-#MinimalVertexCover can be motivated in
some way.

As far as the intractability of counting problems is concerned, the classification of
p-#Matching is still open. This problem might well be #A[1]-complete, which
would imply the intractability of p-#DisjointTriangle and similar problems.

Another nice result would be the classification of the counting problem asso-
ciated with p-DualOfColoring (this problem is defined in [DF99], p. 46).
Although p-DualOfColoring is fixed parameter tractable, we conjecture that
p-#DualOfColoring is #A[1]-complete.

With respect to the problem of counting induced substructures, we have seen that
counting induced paths and cycles is #A[1]-complete. This is not very surpris-
ing, as the two extreme problems corresponding to counting induced substruc-
tures, namely p-#IndependentSet and p-#Clique, are #A[1]-hard. Further-
more, induced cycles and paths are the complements of graphs of high treewidth.
Therefore, we conjecture that the problem of counting induced substructures is
#A[1]-hard irrespective of the substructures under consideration.
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