Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > AUTHORS > SHAFI GOLDWASSER:
All reports by Author Shafi Goldwasser:

TR17-108 | 19th June 2017
Shafi Goldwasser, Guy Rothblum, Yael Tauman Kalai

Delegating Computation: Interactive Proofs for Muggles

Revisions: 1

In this work we study interactive proofs for tractable languages. The (honest) prover should be efficient and run in polynomial time, or in other words a ``muggle'' (Muggle: ``In the fiction of J.K. Rowling: a person who possesses no magical powers''; from the Oxford English Dictionary). The verifier should be ... more >>>


TR17-105 | 14th June 2017
Shafi Goldwasser, Ofer Grossman, Dhiraj Holden

Pseudo-Deterministic Proofs

We introduce pseudo-deterministic interactive proofs (psdAM): interactive proof systems for search problems where
the verifier is guaranteed with high probability to output the same output on different executions.
As in the case with classical interactive proofs,
the verifier is a probabilistic polynomial time algorithm interacting with an untrusted powerful prover.

... more >>>

TR16-056 | 8th April 2016
Shafi Goldwasser, Dhiraj Holden

On the Fine Grained Complexity of Polynomial Time Problems Given Correlated Instances

We set out to study the impact of having access to correlated instances on the fine grained complexity of polynomial time problems, which have notoriously resisted improvement.
In particular, we show how to use a logarithmic number of auxiliary correlated instances to obtain $o(n^2)$ time algorithms for the longest common ... more >>>


TR15-208 | 26th December 2015
Shafi Goldwasser, Ofer Grossman

Perfect Bipartite Matching in Pseudo-Deterministic $RNC$

Revisions: 2

In this paper we present a pseudo-deterministic $RNC$ algorithm for finding perfect matchings in bipartite graphs. Specifically, our algorithm is a randomized parallel algorithm which uses $poly(n)$ processors, $poly({\log n})$ depth, $poly(\log n)$ random bits, and outputs for each bipartite input graph a unique perfect matching with high probability. That ... more >>>


TR15-009 | 16th January 2015
Aloni Cohen, Shafi Goldwasser, Vinod Vaikuntanathan

Aggregate Pseudorandom Functions and Connections to Learning

Revisions: 1

In the first part of this work, we introduce a new type of pseudo-random function for which ``aggregate queries'' over exponential-sized sets can be efficiently answered. An example of an aggregate query may be the product of all function values belonging to an exponential-sized interval, or the sum of all ... more >>>


TR14-083 | 19th June 2014
Irit Dinur, Shafi Goldwasser, Huijia Lin

The Computational Benefit of Correlated Instances

The starting point of this paper is that instances of computational problems often do not exist in isolation. Rather, multiple and correlated instances of the same problem arise naturally in the real world. The challenge is how to gain computationally from instance correlations when they exist. We will be interested ... more >>>


TR12-101 | 10th August 2012
Oded Goldreich, Shafi Goldwasser, Dana Ron

On the possibilities and limitations of pseudodeterministic algorithms

We study the possibilities and limitations
of pseudodeterministic algorithms,
a notion put forward by Gat and Goldwasser (2011).
These are probabilistic algorithms that solve search problems
such that on each input, with high probability, they output
the same solution, which may be thought of as a canonical solution.
We consider ... more >>>


TR12-010 | 5th February 2012
Shafi Goldwasser, Guy Rothblum

How to Compute in the Presence of Leakage

We address the following problem: how to execute any algorithm P, for an unbounded number of executions, in the presence of an adversary who observes partial information on the internal state of the computation during executions. The security guarantee is that the adversary learns nothing, beyond P's input/output behavior.

This ... more >>>




ISSN 1433-8092 | Imprint