The existence of "unstructured" hard languages in $\text{NP}\cap\text{coNP}$ is an intriguing open question. Bennett and Gill (SICOMP, 1981) asked whether $\text{P}$ is separated from $\text{NP}\cap\text{coNP}$ relative to a random oracle, a question that remained open ever since. While a hard language in $\text{NP}\cap\text{coNP}$ can be constructed in a black-box way ... more >>>
A secret-sharing scheme enables a dealer to share a secret $s$ among $n$ parties such that only authorized subsets of parties, specified by a monotone access structure $f:\{0,1\}^n\to\{0,1\}$, can reconstruct $s$ from their shares. Other subsets of parties learn nothing about $s$.
The question of minimizing the (largest) share size ... more >>>
Cryptographic hash functions are efficiently computable functions that shrink a long input into a shorter output while achieving some of the useful security properties of a random function. The most common type of such hash functions is {\em collision resistant} hash functions (CRH), which prevent an efficient attacker from finding ... more >>>
A one-way function is $d$-local if each of its outputs depends on at most $d$ input bits. In (Applebaum, Ishai, and Kushilevitz, FOCS 2004) it was shown that, under relatively mild assumptions, there exist $4$-local one-way functions (OWFs). This result is not far from optimal as it is not hard ... more >>>
Let $G:\{0,1\}^n\to\{0,1\}^m$ be a pseudorandom generator. We say that a circuit implementation of $G$ is $(k,q)$-robust if for every set $S$ of at most $k$ wires anywhere in the circuit, there is a set $T$ of at most $q|S|$ outputs, such that conditioned on the values of $S$ and $T$ ... more >>>
Yao's garbled circuit construction transforms a boolean circuit $C:\{0,1\}^n\to\{0,1\}^m$
into a ``garbled circuit'' $\hat{C}$ along with $n$ pairs of $k$-bit keys, one for each
input bit, such that $\hat{C}$ together with the $n$ keys
corresponding to an input $x$ reveal $C(x)$ and no additional information about $x$.
The garbled circuit ...
more >>>
This paper solves the open problem of exact learning
geometric objects bounded by hyperplanes (and more generally by any constant
degree algebraic surfaces) in the constant
dimensional space from equivalence queries only (i.e., in the on-line learning
model).
We present a novel approach that allows, under ...
more >>>