Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > AUTHORS > GÁBOR IVANYOS:
All reports by Author Gábor Ivanyos:

TR17-016 | 31st January 2017
Vishwas Bhargava, Gábor Ivanyos, Rajat Mittal, Nitin Saxena

Irreducibility and deterministic r-th root finding over finite fields

Constructing $r$-th nonresidue over a finite field is a fundamental computational problem. A related problem is to construct an irreducible polynomial of degree $r^e$ (where $r$ is a prime) over a given finite field $\F_q$ of characteristic $p$ (equivalently, constructing the bigger field $\F_{q^{r^e}}$). Both these problems have famous randomized ... more >>>


TR14-034 | 3rd March 2014
Gábor Ivanyos, Raghav Kulkarni, Youming Qiao, Miklos Santha, Aarthi Sundaram

On the complexity of trial and error for constraint satisfaction problems

In a recent work of Bei, Chen and Zhang (STOC 2013), a trial and error model of computing was introduced, and applied to some constraint satisfaction problems. In this model the input is hidden by an oracle which, for a candidate assignment, reveals some information about a violated constraint if ... more >>>


TR13-103 | 24th July 2013
Gábor Ivanyos, Marek Karpinski, Youming Qiao, Miklos Santha

Generalized Wong sequences and their applications to Edmonds' problems

We design two deterministic polynomial time algorithms for variants of a problem introduced by Edmonds in 1967: determine the rank of a matrix $M$ whose entries are homogeneous linear polynomials over the integers. Given a linear subspace $\mathcal{B}$ of the $n \times n$ matrices over some field $\mathbb{F}$, we consider ... more >>>


TR12-068 | 25th May 2012
Manuel Arora, Gábor Ivanyos, Marek Karpinski, Nitin Saxena

Deterministic Polynomial Factoring and Association Schemes

The problem of finding a nontrivial factor of a polynomial $f(x)$ over a finite field $\mathbb{F}_q$ has many known efficient, but randomized, algorithms. The deterministic complexity of this problem is a famous open question even assuming the generalized Riemann hypothesis (GRH). In this work we improve the state of the ... more >>>


TR09-058 | 4th July 2009
Gábor Ivanyos, Marek Karpinski, Nitin Saxena

Deterministic Polynomial Time Algorithms for Matrix Completion Problems

We present new deterministic algorithms for several cases of the maximum rank matrix completion
problem (for short matrix completion), i.e. the problem of assigning values to the variables in
a given symbolic matrix as to maximize the resulting matrix rank. Matrix completion belongs to
the fundamental problems in computational complexity ... more >>>


TR08-099 | 19th November 2008
Gábor Ivanyos, Marek Karpinski, Lajos Rónyai, Nitin Saxena

Trading GRH for algebra: algorithms for factoring polynomials and related structures

In this paper we develop techniques that eliminate the need of the Generalized
Riemann Hypothesis (GRH) from various (almost all) known results about deterministic
polynomial factoring over finite fields. Our main result shows that given a
polynomial f(x) of degree n over a finite field k, we ... more >>>


TR08-043 | 12th April 2008
Gábor Ivanyos, Marek Karpinski, Nitin Saxena

Schemes for Deterministic Polynomial Factoring

In this work we relate the deterministic
complexity of factoring polynomials (over
finite
fields) to certain combinatorial objects we
call
m-schemes. We extend the known conditional
deterministic subexponential time polynomial
factoring algorithm for finite fields to get an
underlying m-scheme. We demonstrate ... more >>>




ISSN 1433-8092 | Imprint