Locally testable codes (LTCs) of constant distance that allow the tester to make a linear number of queries have become the focus of attention recently, due to their elegant connections to hardness of approximation. In particular, the binary Reed-Muller code of block length $N$ and distance $d$ is known to ... more >>>
We construct an explicit family of linear rank-metric codes over any field ${\mathbb F}_h$ that enables efficient list decoding up to a fraction $\rho$ of errors in the rank metric with a rate of $1-\rho-\epsilon$, for any desired $\rho \in (0,1)$ and $\epsilon > 0$. Previously, a Monte Carlo construction ... more >>>
Folded Reed-Solomon codes are an explicit family of codes that achieve the optimal trade-off between rate and list error-correction capability. Specifically, for any $\epsilon > 0$, Guruswami and Rudra presented an $n^{O(1/\epsilon)}$ time algorithm to list decode appropriate folded RS codes of rate $R$ from a fraction $1-R-\epsilon$ of ... more >>>