Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > AUTHORS > SRIKANTH SRINIVASAN:
All reports by Author Srikanth Srinivasan:

TR19-172 | 28th November 2019
Prasad Chaugule, Mrinal Kumar, Nutan Limaye, Chandra Kanta Mohapatra, Adrian She, Srikanth Srinivasan

Schur Polynomials do not have small formulas if the Determinant doesn't!

Schur Polynomials are families of symmetric polynomials that have been
classically studied in Combinatorics and Algebra alike. They play a central
role in the study of Symmetric functions, in Representation theory [Sta99], in
Schubert calculus [LM10] as well as in Enumerative combinatorics [Gas96, Sta84,
Sta99]. In recent years, they have ... more >>>


TR19-138 | 6th October 2019
Srikanth Srinivasan, Utkarsh Tripathi, S Venkitesh

On the Probabilistic Degrees of Symmetric Boolean functions

The probabilistic degree of a Boolean function $f:\{0,1\}^n\rightarrow \{0,1\}$ is defined to be the smallest $d$ such that there is a random polynomial $\mathbf{P}$ of degree at most $d$ that agrees with $f$ at each point with high probability. Introduced by Razborov (1987), upper and lower bounds on probabilistic degrees ... more >>>


TR18-207 | 5th December 2018
Siddharth Bhandari, Prahladh Harsha, Tulasimohan Molli, Srikanth Srinivasan

On the Probabilistic Degree of OR over the Reals

We study the probabilistic degree over reals of the OR function on $n$ variables. For an error parameter $\epsilon$ in (0,1/3), the $\epsilon$-error probabilistic degree of any Boolean function $f$ over reals is the smallest non-negative integer $d$ such that the following holds: there exists a distribution $D$ of polynomials ... more >>>


TR18-162 | 16th September 2018
Swapnam Bajpai, Vaibhav Krishan, Deepanshu Kush, Nutan Limaye, Srikanth Srinivasan

A #SAT Algorithm for Small Constant-Depth Circuits with PTF gates

We show that there is a randomized algorithm that, when given a small constant-depth Boolean circuit $C$ made up of gates that compute constant-degree Polynomial Threshold functions or PTFs (i.e., Boolean functions that compute signs of constant-degree polynomials), counts the number of satisfying assignments to $C$ in significantly better than ... more >>>


TR18-062 | 7th April 2018
Suryajith Chillara, Christian Engels, Nutan Limaye, Srikanth Srinivasan

A Near-Optimal Depth-Hierarchy Theorem for Small-Depth Multilinear Circuits

We study the size blow-up that is necessary to convert an algebraic circuit of product-depth $\Delta+1$ to one of product-depth $\Delta$ in the multilinear setting.

We show that for every positive $\Delta = \Delta(n) = o(\log n/\log \log n),$ there is an explicit multilinear polynomial $P^{(\Delta)}$ on $n$ variables that ... more >>>


TR17-156 | 15th October 2017
Suryajith Chillara, Nutan Limaye, Srikanth Srinivasan

Small-depth Multilinear Formula Lower Bounds for Iterated Matrix Multiplication, with Applications

The complexity of Iterated Matrix Multiplication is a central theme in Computational Complexity theory, as the problem is closely related to the problem of separating various complexity classes within $\mathrm{P}$. In this paper, we study the algebraic formula complexity of multiplying $d$ many $2\times 2$ matrices, denoted $\mathrm{IMM}_{d}$, and show ... more >>>


TR17-013 | 23rd January 2017
Abhishek Bhrushundi, Prahladh Harsha, Srikanth Srinivasan

On polynomial approximations over $\mathbb{Z}/2^k\mathbb{Z}$

We study approximation of Boolean functions by low-degree polynomials over the ring $\mathbb{Z}/2^k\mathbb{Z}$. More precisely, given a Boolean function F$:\{0,1\}^n \rightarrow \{0,1\}$, define its $k$-lift to be F$_k:\{0,1\}^n \rightarrow \{0,2^{k-1}\}$ by $F_k(x) = 2^{k-F(x)}$ (mod $2^k$). We consider the fractional agreement (which we refer to as $\gamma_{d,k}(F)$) of $F_k$ with ... more >>>


TR16-143 | 15th September 2016
Nikhil Balaji, Nutan Limaye, Srikanth Srinivasan

An Almost Cubic Lower Bound for $\Sigma\Pi\Sigma$ Circuits Computing a Polynomial in VP

In this note, we prove that there is an explicit polynomial in VP such that any $\Sigma\Pi\Sigma$ arithmetic circuit computing it must have size at least $n^{3-o(1)}$. Up to $n^{o(1)}$ factors, this strengthens a recent result of Kayal, Saha and Tavenas (ICALP 2016) which gives a polynomial in VNP with ... more >>>


TR15-118 | 23rd July 2015
Hervé Fournier, Nutan Limaye, Meena Mahajan, Srikanth Srinivasan

The shifted partial derivative complexity of Elementary Symmetric Polynomials

We continue the study of the shifted partial derivative measure, introduced by Kayal (ECCC 2012), which has been used to prove many strong depth-4 circuit lower bounds starting from the work of Kayal, and that of Gupta et al. (CCC 2013).

We show a strong lower bound on the dimension ... more >>>


TR15-022 | 9th February 2015
Nutan Limaye, Guillaume Malod, Srikanth Srinivasan

Lower bounds for non-commutative skew circuits

Revisions: 1

Nisan (STOC 1991) exhibited a polynomial which is computable by linear sized non-commutative circuits but requires exponential sized non-commutative algebraic branching programs. Nisan's hard polynomial is in fact computable by linear sized skew circuits (skew circuits are circuits where every multiplication gate has the property that all but one of ... more >>>


TR14-005 | 14th January 2014
Neeraj Kayal, Nutan Limaye, Chandan Saha, Srikanth Srinivasan

An Exponential Lower Bound for Homogeneous Depth Four Arithmetic Formulas

We show here a $2^{\Omega(\sqrt{d} \cdot \log N)}$ size lower bound for homogeneous depth four arithmetic formulas. That is, we give
an explicit family of polynomials of degree $d$ on $N$ variables (with $N = d^3$ in our case) with $0, 1$-coefficients such that
for any representation of ... more >>>


TR13-167 | 28th November 2013
Venkatesan Guruswami, Prahladh Harsha, Johan Håstad, Srikanth Srinivasan, Girish Varma

Super-polylogarithmic hypergraph coloring hardness via low-degree long codes

We prove improved inapproximability results for hypergraph coloring using the low-degree polynomial code (aka, the “short code” of Barak et. al. [FOCS 2012]) and the techniques proposed by Dinur and Guruswami [FOCS 2013] to incorporate this code for inapproximability results.

In particular, we prove quasi-NP-hardness of the following problems on ... more >>>


TR12-158 | 14th November 2012
Aditya Bhaskara, Devendra Desai, Srikanth Srinivasan

Optimal Hitting Sets for Combinatorial Shapes

We consider the problem of constructing explicit Hitting sets for Combinatorial Shapes, a class of statistical tests first studied by Gopalan, Meka, Reingold, and Zuckerman (STOC 2011). These generalize many well-studied classes of tests, including symmetric functions and combinatorial rectangles. Generalizing results of Linial, Luby, Saks, and Zuckerman (Combinatorica 1997) ... more >>>




ISSN 1433-8092 | Imprint