Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > AUTHORS > JAIKUMAR RADHAKRISHNAN:
All reports by Author Jaikumar Radhakrishnan:

TR18-211 | 3rd December 2018
Kshitij Gajjar, Jaikumar Radhakrishnan

Parametric Shortest Paths in Planar Graphs

We construct a family of planar graphs $(G_n: n\geq 4)$, where $G_n$ has $n$ vertices including a source vertex $s$ and a sink vertex $t$, and edge weights that change linearly with a parameter $\lambda$ such that, as $\lambda$ increases, the cost of the shortest path from $s$ to $t$ ... more >>>


TR16-103 | 6th July 2016
Jaikumar Radhakrishnan, Swagato Sanyal

The zero-error randomized query complexity of the pointer function.

The pointer function of G{\"{o}}{\"{o}}s, Pitassi and Watson
\cite{DBLP:journals/eccc/GoosP015a} and its variants have recently
been used to prove separation results among various measures of
complexity such as deterministic, randomized and quantum query
complexities, exact and approximate polynomial degrees, etc. In
particular, the widest possible (quadratic) separations between
deterministic and zero-error ... more >>>


TR16-033 | 10th March 2016
Venkatesan Guruswami, Jaikumar Radhakrishnan

Tight bounds for communication assisted agreement distillation

Suppose Alice holds a uniformly random string $X \in \{0,1\}^N$ and Bob holds a noisy version $Y$ of $X$ where each bit of $X$ is flipped independently with probability $\epsilon \in [0,1/2]$. Alice and Bob would like to extract a common random string of min-entropy at least $k$. In this ... more >>>


TR15-199 | 7th December 2015
Prahladh Harsha, Rahul Jain, Jaikumar Radhakrishnan

Relaxed partition bound is quadratically tight for product distributions

Let $f : \{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}$ be a 2-party function. For every product distribution $\mu$ on $\{0,1\}^n \times \{0,1\}^n$, we show that $${{CC}}^\mu_{0.49}(f) = O\left(\left(\log {{rprt}}_{1/4}(f) \cdot \log \log {{rprt}}_{1/4}(f)\right)^2\right),$$ where ${{CC}^\mu_\varepsilon(f)$ is the distributional communication complexity with error at most $\varepsilon$ under the distribution $\mu$ and ... more >>>


TR14-074 | 14th May 2014
Arkadev Chattopadhyay, Jaikumar Radhakrishnan, Atri Rudra

Topology matters in communication

We provide the first communication lower bounds that are sensitive to the network topology for computing natural and simple functions by point to point message passing protocols for the `Number in Hand' model. All previous lower bounds were either for the broadcast model or assumed full connectivity of the network. ... more >>>


TR06-151 | 10th December 2006
Prahladh Harsha, Rahul Jain, David McAllester, Jaikumar Radhakrishnan

The communication complexity of correlation

We examine the communication required for generating random variables
remotely. One party Alice will be given a distribution D, and she
has to send a message to Bob, who is then required to generate a
value with distribution exactly D. Alice and Bob are allowed
to share random bits generated ... more >>>


TR03-017 | 27th March 2003
Peter Bro Miltersen, Jaikumar Radhakrishnan, Ingo Wegener

On Converting CNF to DNF

The best-known representations of boolean functions f are those of disjunctions of terms (DNFs) and as conjuctions of clauses (CNFs). It is convenient to define the DNF size of f as the minimal number of terms in a DNF representing f and the CNF size as the minimal number of ... more >>>


TR96-004 | 18th January 1996
Shiva Chaudhuri, Jaikumar Radhakrishnan

Deterministic Restrictions in Circuit Complexity

We study the complexity of computing Boolean functions using AND, OR
and NOT gates. We show that a circuit of depth $d$ with $S$ gates can
be made to output a constant by setting $O(S^{1-\epsilon(d)})$ (where
$\epsilon(d) = 4^{-d}$) of its input values. This implies a
superlinear size lower bound ... more >>>




ISSN 1433-8092 | Imprint