We study the computational power of deciding whether a given truth-table can be described by a circuit of a given size (the Minimum Circuit Size Problem, or MCSP for short), and of the variant denoted as MKTP where circuit size is replaced by a polynomially-related Kolmogorov measure. All prior reductions ... more >>>
In 1969, Strassen shocked the world by showing that two n x n matrices could be multiplied in time asymptotically less than $O(n^3)$. While the recursive construction in his algorithm is very clear, the key gain was made by showing that 2 x 2 matrix multiplication could be performed with ... more >>>
We show that the Graph Automorphism problem is ZPP-reducible to MKTP, the problem of minimizing time-bounded Kolmogorov complexity. MKTP has previously been studied in connection with the Minimum Circuit Size Problem (MCSP) and is often viewed as essentially a different encoding of MCSP. All prior reductions to MCSP have applied ... more >>>
We show that there exists a family of groups $G_n$ and nontrivial irreducible representations $\rho_n$ such that, for any constant $t$, the average of $\rho_n$ over $t$ uniformly random elements $g_1, \ldots, g_t \in G_n$ has operator norm $1$ with probability approaching 1 as $n \rightarrow \infty$. More quantitatively, we ... more >>>