In this work, we design an interactive coding scheme that converts any two party interactive protocol $\Pi$ into another interactive protocol $\Pi'$, such that even if errors are introduced during the execution of $\Pi'$, the parties are able to determine what the outcome of running $\Pi$ would be in an ... more >>>
Given a Boolean circuit $C$, we wish to convert it to a circuit $C'$ that computes the same function as $C$ even if some of its gates suffer from adversarial short circuit errors, i.e., their output is replaced by the value of one of their inputs [KLM97]. Can we ... more >>>
We give a complete answer to the following basic question: ``What is the maximal fraction of deletions or insertions tolerable by $q$-ary list-decodable codes with non-vanishing information rate?''
This question has been open even for binary codes, including the restriction to the binary insertion-only setting, where the best known results ... more >>>
This paper makes progress on the problem of explicitly constructing a binary tree code with constant distance and constant alphabet size.
For every constant $\delta < 1$ we give an explicit binary tree code with distance $\delta$ and alphabet size $(\log{n})^{O(1)}$, where $n$ is the depth of the tree. This ... more >>>
We study the communication rate of coding schemes for interactive communication that transform any two-party interactive protocol into a protocol that is robust to noise.
Recently, Haeupler (FOCS '14) showed that if an $\epsilon > 0$ fraction of transmissions are corrupted, adversarially or randomly, then it is possible to ... more >>>
We study coding schemes for multiparty interactive communication over synchronous networks that suffer from stochastic noise, where each bit is independently flipped with probability $\epsilon$. We analyze the minimal overhead that must be added by the coding scheme in order to succeed in performing the computation despite the noise.
Our ... more >>>
We study \emph{efficient, deterministic} interactive coding schemes that simulate any interactive protocol both under random and adversarial errors, and can achieve a constant communication rate independent of the protocol length.
For channels that flip bits independently with probability~$\epsilon<1/2$, our coding scheme achieves a communication rate of $1 - O(\sqrt{H({\epsilon})})$ and ... more >>>
We consider the task of multiparty computation performed over networks in
the presence of random noise. Given an $n$-party protocol that takes $R$
rounds assuming noiseless communication, the goal is to find a coding
scheme that takes $R'$ rounds and computes the same function with high
probability even when the ...
more >>>