Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > AUTHORS > MARIA LUISA BONET:
All reports by Author Maria Luisa Bonet:

TR15-163 | 11th October 2015
James Aisenberg, Maria Luisa Bonet, Sam Buss

2-D Tucker is PPA complete

The 2-D Tucker search problem is shown to be PPA-hard under many-one reductions; therefore it is complete for PPA. The same holds for $k$-D Tucker for all $k\ge 2$. This corrects a claim in the literature that the Tucker search problem is in PPAD.

more >>>

TR03-041 | 29th May 2003
Albert Atserias, Maria Luisa Bonet, Jordi Levy

On Chvatal Rank and Cutting Planes Proofs

We study the Chv\'atal rank of polytopes as a complexity measure of
unsatisfiable sets of clauses. Our first result establishes a
connection between the Chv\'atal rank and the minimum refutation
length in the cutting planes proof system. The result implies that
length lower bounds for cutting planes, or even for ... more >>>


TR02-010 | 21st January 2002
Albert Atserias, Maria Luisa Bonet

On the Automatizability of Resolution and Related Propositional Proof Systems

Having good algorithms to verify tautologies as efficiently as possible
is of prime interest in different fields of computer science.
In this paper we present an algorithm for finding Resolution refutations
based on finding tree-like Res(k) refutations. The algorithm is based on
the one of Beame and Pitassi \cite{BP96} ... more >>>


TR98-035 | 8th May 1998
Maria Luisa Bonet, Juan Luis Esteban, Jan Johannsen

Exponential Separations between Restricted Resolution and Cutting Planes Proof Systems

We prove an exponential lower bound for tree-like Cutting Planes
refutations of a set of clauses which has polynomial size resolution
refutations. This implies an exponential separation between tree-like
and dag-like proofs for both Cutting Planes and resolution; in both
cases only superpolynomial separations were known before.
In order to ... more >>>




ISSN 1433-8092 | Imprint