The problem of learning $t$-term DNF formulas (for $t = O(1)$) has been studied extensively in the PAC model since its introduction by Valiant (STOC 1984). A $t$-term DNF can be efficiently learnt using a $t$-term DNF only if $t = 1$ i.e., when it is an AND, while even ... more >>>
The k-Even Set problem is a parameterized variant of the Minimum Distance Problem of linear codes over $\mathbb{F}_2$, which can be stated as follows: given a generator matrix A and an integer k, determine whether the code generated by A has distance at most k, or in other words, whether ... more >>>
We identify a new notion of pseudorandomness for randomness sources, which we call the average bias. Given a distribution $Z$ over $\{0,1\}^n$, its average bias is: $b_{\text{av}}(Z) =2^{-n} \sum_{c \in \{0,1\}^n} |\mathbb{E}_{z \sim Z}(-1)^{\langle c, z\rangle}|$. A source with average bias at most $2^{-k}$ has min-entropy at least $k$, and ... more >>>
The $k$-Even Set problem is a parameterized variant of the Minimum Distance Problem of linear codes over $\mathbb F_2$, which can be stated as follows: given a generator matrix $\mathbf A$ and an integer $k$, determine whether the code generated by $\mathbf A$ has distance at most $k$. Here, $k$ ... more >>>
We prove the hardness of weakly learning halfspaces in the presence of adversarial noise using polynomial threshold functions (PTFs). In particular, we prove that for any constants $d \in \mathbb{Z}^+$ and $\epsilon > 0$, it is NP-hard to decide: given a set of $\{-1,1\}$-labeled points in $\mathbb{R}^n$ whether (YES Case) ... more >>>
This work investigates the hardness of computing sparse solutions to systems of linear equations over $\mathbb{F}_2$. Consider the $k$-EvenSet problem: given a homogeneous system of linear equations over $\mathbb{F}_2$ on $n$ variables, decide if there exists a nonzero solution of Hamming weight at most $k$ (i.e. a $k$-sparse solution). While ... more >>>