All reports by Author Rajat Mittal:

__
TR19-033
| 20th February 2019
__

Ashish Dwivedi, Rajat Mittal, Nitin Saxena#### Counting basic-irreducible factors mod $p^k$ in deterministic poly-time and $p$-adic applications

__
TR19-008
| 20th January 2019
__

Ashish Dwivedi, Rajat Mittal, Nitin Saxena#### Efficiently factoring polynomials modulo $p^4$

__
TR17-016
| 31st January 2017
__

Vishwas Bhargava, GĂˇbor Ivanyos, Rajat Mittal, Nitin Saxena#### Irreducibility and deterministic r-th root finding over finite fields

Ashish Dwivedi, Rajat Mittal, Nitin Saxena

Finding an irreducible factor, of a polynomial $f(x)$ modulo a prime $p$, is not known to be in deterministic polynomial time. Though there is such a classical algorithm that {\em counts} the number of irreducible factors of $f\bmod p$. We can ask the same question modulo prime-powers $p^k$. The irreducible ... more >>>

Ashish Dwivedi, Rajat Mittal, Nitin Saxena

Polynomial factoring has famous practical algorithms over fields-- finite, rational \& $p$-adic. However, modulo prime powers it gets hard as there is non-unique factorization and a combinatorial blowup ensues. For example, $x^2+p \bmod p^2$ is irreducible, but $x^2+px \bmod p^2$ has exponentially many factors! We present the first randomized poly($\deg ... more >>>

Vishwas Bhargava, GĂˇbor Ivanyos, Rajat Mittal, Nitin Saxena

Constructing $r$-th nonresidue over a finite field is a fundamental computational problem. A related problem is to construct an irreducible polynomial of degree $r^e$ (where $r$ is a prime) over a given finite field $\F_q$ of characteristic $p$ (equivalently, constructing the bigger field $\F_{q^{r^e}}$). Both these problems have famous randomized ... more >>>