This paper makes two primary contributions. First, we introduce the concept of counting martingales and use it to define counting measures, counting dimensions, and counting strong dimensions. Second, we apply these new tools to strengthen previous circuit lower bounds.
Resource-bounded measure and dimension have traditionally focused on deterministic time ... more >>>
Bennett and Gill (1981) showed that P^A != NP^A != coNP^A for a random
oracle A, with probability 1. We investigate whether this result
extends to individual polynomial-time random oracles. We consider two
notions of random oracles: p-random oracles in the sense of
martingales and resource-bounded measure (Lutz, 1992; Ambos-Spies ...
more >>>
The measure hypothesis is a quantitative strengthening of the P $\neq$ NP conjecture which asserts that NP is a nonnegligible subset of EXP. Cai, Sivakumar, and Strauss (1997) showed that the analogue of this hypothesis in P is false. In particular, they showed that NTIME[$n^{1/11}$] has measure 0 in P. ... more >>>