A ZAP is a witness-indistinguishable two-message public-coin interactive proof with the following simple structure: the verifier sends a uniformly random string, the prover responds, and the verifier decides in polynomial time whether to accept or reject.
We show that one-way functions imply the existence of ...
more >>>
Randomness extractors provide a generic way of converting sources of randomness that are
merely unpredictable into almost uniformly random bits. While in general, deterministic randomness
extraction is impossible, it is possible if the source has some structural constraints.
While much of the literature on deterministic extraction has focused on sources ...
more >>>
We present the first truly explicit constructions of \emph{non-malleable codes} against tampering by bounded polynomial size circuits. These objects imply unproven circuit lower bounds and our construction is secure provided E requires exponential size nondeterministic circuits, an assumption from the derandomization literature.
Prior works on NMC ...
more >>>
We construct efficient, unconditional non-malleable codes that are secure against tampering functions computed by small-depth circuits. For constant-depth circuits of polynomial size (i.e.~$\mathsf{AC^0}$ tampering functions), our codes have codeword length $n = k^{1+o(1)}$ for a $k$-bit message. This is an exponential improvement of the previous best construction due to Chattopadhyay ... more >>>