All reports by Author Deeparnab Chakrabarty:

__
TR18-005
| 9th January 2018
__

C. Seshadhri, Deeparnab Chakrabarty#### Adaptive Boolean Monotonicity Testing in Total Influence Time

__
TR17-159
| 28th October 2017
__

Hadley Black, Deeparnab Chakrabarty, C. Seshadhri#### A $o(d) \cdot \text{polylog}~n$ Monotonicity Tester for Boolean Functions over the Hypergrid $[n]^d$

__
TR17-111
| 2nd June 2017
__

Roksana Baleshzar, Deeparnab Chakrabarty, Ramesh Krishnan S. Pallavoor, Sofya Raskhodnikova, C. Seshadhri#### A Lower Bound for Nonadaptive, One-Sided Error Testing of Unateness of Boolean Functions over the Hypercube

__
TR17-049
| 14th March 2017
__

Roksana Baleshzar, Deeparnab Chakrabarty, Ramesh Krishnan S. Pallavoor, Sofya Raskhodnikova, C. Seshadhri#### Optimal Unateness Testers for Real-Valued Functions: Adaptivity Helps

__
TR16-133
| 25th August 2016
__

C. Seshadhri, Deeparnab Chakrabarty#### A $\widetilde{O}(n)$ Non-Adaptive Tester for Unateness

Revisions: 1

__
TR14-042
| 2nd April 2014
__

Deeparnab Chakrabarty, Kashyap Dixit, Madhav Jha, C. Seshadhri#### Property Testing on Product Distributions: Optimal Testers for Bounded Derivative Properties

__
TR13-062
| 18th April 2013
__

C. Seshadhri, Deeparnab Chakrabarty#### An optimal lower bound for monotonicity testing over hypergrids

__
TR13-029
| 19th February 2013
__

C. Seshadhri, Deeparnab Chakrabarty#### A {\huge ${o(n)}$} monotonicity tester for Boolean functions over the hypercube

Revisions: 1

__
TR12-030
| 4th April 2012
__

C. Seshadhri, Deeparnab Chakrabarty#### Optimal bounds for monotonicity and Lipschitz testing over the hypercube

Revisions: 2

C. Seshadhri, Deeparnab Chakrabarty

The problem of testing monotonicity

of a Boolean function $f:\{0,1\}^n \to \{0,1\}$ has received much attention

recently. Denoting the proximity parameter by $\varepsilon$, the best tester is the non-adaptive $\widetilde{O}(\sqrt{n}/\varepsilon^2)$ tester

of Khot-Minzer-Safra (FOCS 2015). Let $I(f)$ denote the total influence

of $f$. We give an adaptive tester whose running ...
more >>>

Hadley Black, Deeparnab Chakrabarty, C. Seshadhri

We study monotonicity testing of Boolean functions over the hypergrid $[n]^d$ and design a non-adaptive tester with $1$-sided error whose query complexity is $\tilde{O}(d^{5/6})\cdot \text{poly}(\log n,1/\epsilon)$. Previous to our work, the best known testers had query complexity linear in $d$ but independent of $n$. We improve upon these testers as ... more >>>

Roksana Baleshzar, Deeparnab Chakrabarty, Ramesh Krishnan S. Pallavoor, Sofya Raskhodnikova, C. Seshadhri

A Boolean function $f:\{0,1\}^d \to \{0,1\}$ is unate if, along each coordinate, the function is either nondecreasing or nonincreasing. In this note, we prove that any nonadaptive, one-sided error unateness tester must make $\Omega(\frac{d}{\log d})$ queries. This result improves upon the $\Omega(\frac{d}{\log^2 d})$ lower bound for the same class of ... more >>>

Roksana Baleshzar, Deeparnab Chakrabarty, Ramesh Krishnan S. Pallavoor, Sofya Raskhodnikova, C. Seshadhri

We study the problem of testing unateness of functions $f:\{0,1\}^d \to \mathbb{R}.$ We give a $O(\frac{d}{\epsilon} \cdot \log\frac{d}{\epsilon})$-query nonadaptive tester and a $O(\frac{d}{\epsilon})$-query adaptive tester and show that both testers are optimal for a fixed distance parameter $\epsilon$. Previously known unateness testers worked only for Boolean functions, and their query ... more >>>

C. Seshadhri, Deeparnab Chakrabarty

Khot and Shinkar (RANDOM, 2016) recently describe an adaptive, $O(n\log(n)/\varepsilon)$-query tester for unateness of Boolean functions $f:\{0,1\}^n \mapsto \{0,1\}$. In this note we describe a simple non-adaptive, $O(n\log(n/\varepsilon)/\varepsilon)$ -query tester for unateness for functions over the hypercube with any ordered range.

Deeparnab Chakrabarty, Kashyap Dixit, Madhav Jha, C. Seshadhri

The primary problem in property testing is to decide whether a given function satisfies a certain property, or is far from any function satisfying it. This crucially requires a notion of distance between functions. The most prevalent notion is the Hamming distance over the {\em uniform} distribution on the domain. ... more >>>

C. Seshadhri, Deeparnab Chakrabarty

For positive integers $n, d$, consider the hypergrid $[n]^d$ with the coordinate-wise product partial ordering denoted by $\prec$.

A function $f: [n]^d \mapsto \mathbb{N}$ is monotone if $\forall x \prec y$, $f(x) \leq f(y)$.

A function $f$ is $\varepsilon$-far from monotone if at least an $\varepsilon$-fraction of values must ...
more >>>

C. Seshadhri, Deeparnab Chakrabarty

Given oracle access to a Boolean function $f:\{0,1\}^n \mapsto \{0,1\}$, we design a randomized tester that takes as input a parameter $\eps>0$, and outputs {\sf Yes} if the function is monotone, and outputs {\sf No} with probability $>2/3$, if the function is $\eps$-far from monotone. That is, $f$ needs to ... more >>>

C. Seshadhri, Deeparnab Chakrabarty

The problem of monotonicity testing of the boolean hypercube is a classic well-studied, yet unsolved

question in property testing. We are given query access to $f:\{0,1\}^n \mapsto R$

(for some ordered range $R$). The boolean hypercube ${\cal B}^n$ has a natural partial order, denoted by $\prec$ (defined by the product ...
more >>>