Aaronson (STOC 2010) conjectured that almost $k$-wise independence fools constant-depth circuits; he called this the generalised Linial-Nisan conjecture. Aaronson himself later found a counterexample for depth-3 circuits. We give here an improved counterexample for depth-2 circuits (DNFs). This shows, for instance, that Bazzi's celebrated result ($k$-wise independence fools DNFs) cannot ... more >>>
In a seminal work, Buhrman et al. (STOC 2014) defined the class $CSPACE(s,c)$ of problems solvable in space $s$ with an additional catalytic tape of size $c$, which is a tape whose initial content must be restored at the end of the computation. They showed that uniform $TC^1$ circuits are ... more >>>
The propositional proof system resolution over parities (Res($\oplus$)) combines resolution and the linear algebra over GF(2). It is a challenging open question to prove a superpolynomial lower bound on the proof size in this system. For many years, superpolynomial lower bounds were known only in tree-like cases. Recently, Efremenko, Garlik, ... more >>>
Propositional proof complexity deals with the lengths of polynomial-time verifiable proofs for Boolean tautologies. An abundance of proof systems is known, including algebraic and semialgebraic systems, which work with polynomial equations and inequalities, respectively. The most basic algebraic proof system is based on Hilbert's Nullstellensatz (Beame et al., 1996). Tropical ... more >>>
Lifting theorems are used for transferring lower bounds between Boolean function complexity measures. Given a lower bound on a complexity measure $A$ for some function $f$, we compose $f$ with a carefully chosen gadget function $g$ and get essentially the same lower bound on a complexity measure $B$ for the ... more >>>
The (extended) Binary Value Principle (eBVP, the equation $\sum x_i 2^{i-1} = -k$ for $k > 0$
and in the presence of $x_i^2=x_i$) has received a lot of attention recently, several lower
bounds have been proved for it [Alekseev et al 20, Alekseev 21, Part and Tzameret 21].
Also ...
more >>>
We introduce the `binary value principle' which is a simple subset-sum instance expressing that a natural number written in binary cannot be negative, relating it to central problems in proof and algebraic complexity. We prove conditional superpolynomial lower bounds on the Ideal Proof System (IPS) refutation size of this instance, ... more >>>