All reports by Author Maciej Obremski:

__
TR24-061
| 5th April 2024
__

Divesh Aggarwal, Pranjal Dutta, Zeyong Li, Maciej Obremski, Sidhant Saraogi#### Improved Lower Bounds for 3-Query Matching Vector Codes

__
TR23-193
| 3rd December 2023
__

Eldon Chung, Alexander Golovnev, Zeyong Li, Maciej Obremski, Sidhant Saraogi, Noah Stephens-Davidowitz#### On the randomized complexity of range avoidance, with applications to cryptography and metacomplexity

__
TR21-150
| 7th November 2021
__

Eldon Chung, Maciej Obremski, Divesh Aggarwal#### Extractors: Low Entropy Requirements Colliding With Non-Malleability

__
TR21-117
| 11th August 2021
__

Divesh Aggarwal, Bhavana Kanukurthi, SaiLakshmiBhavana Obbattu, Maciej Obremski, Sruthi Sekar#### Simplicity Meets Near-Optimal Rate: Non-malleable Codes and Non-malleable Two-source Extractors via Rate Boosters

Revisions: 3

__
TR21-090
| 14th June 2021
__

Divesh Aggarwal, Eldon Chung, Maciej Obremski, Joao Ribeiro#### On Secret Sharing, Randomness, and Random-less Reductions for Secret Sharing

__
TR19-173
| 28th November 2019
__

Divesh Aggarwal, Siyao Guo, Maciej Obremski, Joao Ribeiro, Noah Stephens-Davidowitz#### Extractor Lower Bounds, Revisited

Revisions: 1

Divesh Aggarwal, Pranjal Dutta, Zeyong Li, Maciej Obremski, Sidhant Saraogi

A Matching Vector ($\mathbf{MV}$) family modulo a positive integer $m \ge 2$ is a pair of ordered lists $\mathcal{U} = (\mathbf{u}_1, \cdots, \mathbf{u}_K)$ and $\mathcal{V} = (\mathbf{v}_1, \cdots, \mathbf{v}_K)$ where $\mathbf{u}_i, \mathbf{v}_j \in \mathbb{Z}_m^n$ with the following property: for any $i \in [K]$, the inner product $\langle \mathbf{u}_i, \mathbf{v}_i \rangle ... more >>>

Eldon Chung, Alexander Golovnev, Zeyong Li, Maciej Obremski, Sidhant Saraogi, Noah Stephens-Davidowitz

We study the Range Avoidance Problem (Avoid), in which the input is an expanding circuit $C : \{0,1\}^n \to \{0,1\}^{n+1}$, and the goal is to find a $y \in \{0,1\}^{n+1}$ that is not in the image of $C$. We are interested in the randomized complexity of this problem, i.e., in ... more >>>

Eldon Chung, Maciej Obremski, Divesh Aggarwal

The known constructions of negligible error (non-malleable) two-source extractors can be broadly classified in three categories:

(1) Constructions where one source has min-entropy rate about $1/2$, the other source can have small min-entropy rate, but the extractor doesn't guarantee non-malleability.

(2) Constructions where one source is uniform, and the other ...
more >>>

Divesh Aggarwal, Bhavana Kanukurthi, SaiLakshmiBhavana Obbattu, Maciej Obremski, Sruthi Sekar

At ITCS 2010, Dziembowski, Pietrzak, and Wichs introduced Non-malleable Codes (NMCs). Non-malleability is one of the strongest and most challenging notions of security considered in cryptography and protects against tampering attacks. In the context of coding schemes, non-malleability requires that it be infeasible to tamper the codeword of a message ... more >>>

Divesh Aggarwal, Eldon Chung, Maciej Obremski, Joao Ribeiro

Secret-sharing is one of the most basic and oldest primitives in cryptography, introduced by Shamir and Blakely in the 70s. It allows to strike a meaningful balance between availability and confidentiality of secret information. It has a host of applications most notably in threshold cryptography and multi-party computation. All known ... more >>>

Divesh Aggarwal, Siyao Guo, Maciej Obremski, Joao Ribeiro, Noah Stephens-Davidowitz

We revisit the fundamental problem of determining seed length lower bounds for strong extractors and natural variants thereof. These variants stem from a ``change in quantifiers'' over the seeds of the extractor: While a strong extractor requires that the average output bias (over all seeds) is small for all input ... more >>>