Weizmann Logo
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style

All reports by Author Igor Oliveira:

TR22-081 | 26th May 2022
Zhenjian Lu, Igor Oliveira

Theory and Applications of Probabilistic Kolmogorov Complexity

Diverse applications of Kolmogorov complexity to learning [CIKK16], circuit complexity [OPS19], cryptography [LP20], average-case complexity [Hir21], and proof search [Kra22] have been discovered in recent years. Since the running time of algorithms is a key resource in these fields, it is crucial in the corresponding arguments to consider time-bounded variants ... more >>>

TR22-072 | 15th May 2022
Halley Goldberg, Valentine Kabanets, Zhenjian Lu, Igor Oliveira

Probabilistic Kolmogorov Complexity with Applications to Average-Case Complexity

Understanding the relationship between the worst-case and average-case complexities of $\mathrm{NP}$ and of other subclasses of $\mathrm{PH}$ is a long-standing problem in complexity theory. Over the last few years, much progress has been achieved in this front through the investigation of meta-complexity: the complexity of problems that refer to the ... more >>>

TR21-095 | 8th July 2021
Marco Carmosino, Valentine Kabanets, Antonina Kolokolova, Igor Oliveira

LEARN-Uniform Circuit Lower Bounds and Provability in Bounded Arithmetic

We investigate randomized LEARN-uniformity, which captures the power of randomness and equivalence queries (EQ) in the construction of Boolean circuits for an explicit problem. This is an intermediate notion between P-uniformity and non-uniformity motivated by connections to learning, complexity, and logic. Building on a number of techniques, we establish the ... more >>>

TR20-185 | 1st December 2020
Srinivasan Arunachalam, Alex Grilo, Tom Gur, Igor Oliveira, Aarthi Sundaram

Quantum learning algorithms imply circuit lower bounds

Revisions: 1

We establish the first general connection between the design of quantum algorithms and circuit lower bounds. Specifically, let $\mathrm{C}$ be a class of polynomial-size concepts, and suppose that $\mathrm{C}$ can be PAC-learned with membership queries under the uniform distribution with error $1/2 - \gamma$ by a time $T$ quantum algorithm. ... more >>>

TR20-018 | 18th February 2020
Valentine Kabanets, Sajin Koroth, Zhenjian Lu, Dimitrios Myrisiotis, Igor Oliveira

Algorithms and Lower Bounds for de Morgan Formulas of Low-Communication Leaf Gates

The class $FORMULA[s] \circ \mathcal{G}$ consists of Boolean functions computable by size-$s$ de Morgan formulas whose leaves are any Boolean functions from a class $\mathcal{G}$. We give lower bounds and (SAT, Learning, and PRG) algorithms for $FORMULA[n^{1.99}]\circ \mathcal{G}$, for classes $\mathcal{G}$ of functions with low communication complexity. Let $R^{(k)}(\mathcal{G})$ be ... more >>>

ISSN 1433-8092 | Imprint