All reports by Author Arijit Ghosh:

__
TR22-155
| 15th November 2022
__

Sourav Chakraborty, Eldar Fischer, Arijit Ghosh, Gopinath Mishra, Sayantan Sen#### Testing of Index-Invariant Properties in the Huge Object Model

__
TR20-135
| 9th September 2020
__

Sourav Chakraborty, Arijit Ghosh, Gopinath Mishra, Sayantan Sen#### Estimation of Graph Isomorphism Distance in the Query World

Revisions: 3

__
TR20-114
| 22nd July 2020
__

Anup Bhattacharya, Sourav Chakraborty, Arijit Ghosh, Gopinath Mishra, Manaswi Paraashar#### Disjointness through the Lens of Vapnikâ€“Chervonenkis Dimension: Sparsity and Beyond

__
TR20-108
| 19th July 2020
__

Arijit Bishnu, Arijit Ghosh, Gopinath Mishra, Manaswi Paraashar#### Query Complexity of Global Minimum Cut

Revisions: 1

Sourav Chakraborty, Eldar Fischer, Arijit Ghosh, Gopinath Mishra, Sayantan Sen

The study of distribution testing has become ubiquitous in the area of property testing, both for its theoretical appeal, as well as for its applications in other fields of Computer Science, and in various real-life statistical tasks.

The original distribution testing model relies on samples drawn independently from the distribution ... more >>>

Sourav Chakraborty, Arijit Ghosh, Gopinath Mishra, Sayantan Sen

The graph isomorphism distance between two graphs $G_u$ and $G_k$ is the fraction of entries in the adjacency matrix that has to be changed to make $G_u$ isomorphic to $G_k$. We study the problem of estimating, up to a constant additive factor, the graph isomorphism distance between two graphs in ... more >>>

Anup Bhattacharya, Sourav Chakraborty, Arijit Ghosh, Gopinath Mishra, Manaswi Paraashar

The disjointness problem - where Alice and Bob are given two subsets of $\{1, \dots, n\}$ and they have to check if their sets intersect - is a central problem in the world of communication complexity. While both deterministic and randomized communication complexities for this problem are known to be ... more >>>

Arijit Bishnu, Arijit Ghosh, Gopinath Mishra, Manaswi Paraashar

In this work, we resolve the query complexity of global minimum cut problem for a graph by designing a randomized algorithm for approximating the size of minimum cut in a graph, where the graph can be accessed through local queries like \textsc{Degree}, \textsc{Neighbor}, and \textsc{Adjacency} queries.

Given $\epsilon \in (0,1)$, ... more >>>