Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > AUTHORS > RAY LI:
All reports by Author Ray Li:

TR23-126 | 25th August 2023
Omar Alrabiah, Venkatesan Guruswami, Ray Li

AG codes have no list-decoding friends: Approaching the generalized Singleton bound requires exponential alphabets

A simple, recently observed generalization of the classical Singleton bound to list-decoding asserts that rate $R$ codes are not list-decodable using list-size $L$ beyond an error fraction $\frac{L}{L+1} (1-R)$ (the Singleton bound being the case of $L=1$, i.e., unique decoding). We prove that in order to approach this bound for ... more >>>


TR23-125 | 25th August 2023
Omar Alrabiah, Venkatesan Guruswami, Ray Li

Randomly punctured Reed-Solomon codes achieve list-decoding capacity over linear-sized fields

Reed-Solomon codes are a classic family of error-correcting codes consisting of evaluations of low-degree polynomials over a finite field on some sequence of distinct field elements. They are widely known for their optimal unique-decoding capabilities, but their list-decoding capabilities are not fully understood. Given the prevalence of Reed-Solomon codes, a ... more >>>


TR21-079 | 9th June 2021
Venkatesan Guruswami, Xiaoyu He, Ray Li

The zero-rate threshold for adversarial bit-deletions is less than 1/2

We prove that there exists an absolute constant $\delta>0$ such any binary code $C\subset\{0,1\}^N$ tolerating $(1/2-\delta)N$ adversarial deletions must satisfy $|C|\le 2^{\poly\log N}$ and thus have rate asymptotically approaching $0$. This is the first constant fraction improvement over the trivial bound that codes tolerating $N/2$ adversarial deletions must have rate ... more >>>


TR20-168 | 11th November 2020
Zeyu Guo, Ray Li, Chong Shangguan, Itzhak Tamo, Mary Wootters

Improved List-Decodability of Reed–Solomon Codes via Tree Packings

This paper shows that there exist Reed--Solomon (RS) codes, over large finite fields, that are combinatorially list-decodable well beyond the Johnson radius, in fact almost achieving list-decoding capacity. In particular, we show that for any $\epsilon\in (0,1]$ there exist RS codes with rate $\Omega(\frac{\epsilon}{\log(1/\epsilon)+1})$ that are list-decodable from radius of ... more >>>




ISSN 1433-8092 | Imprint