We establish strong inapproximability for finding the sparsest nonzero vector in a real subspace (where sparsity refers to the number of nonzero entries). Formally we show that it is NP-Hard (under randomized reductions) to approximate the sparsest vector in a subspace within any constant factor. By simple tensoring the inapproximability ... more >>>
k-median and k-means are the two most popular objectives for clustering algorithms. Despite intensive effort, a good understanding of the approximability of these objectives, particularly in $\ell_p$-metrics, remains a major open problem. In this paper, we significantly improve upon the hardness of approximation factors known in literature for these objectives ... more >>>