Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > AUTHORS > VENKATESAN GURUSWAMI:
All reports by Author Venkatesan Guruswami:

TR24-075 | 13th April 2024
Venkatesan Guruswami, Bingkai Lin, Xuandi Ren, Yican Sun, Kewen Wu

Almost Optimal Time Lower Bound for Approximating Parameterized Clique, CSP, and More, under ETH

Revisions: 1

The Parameterized Inapproximability Hypothesis (PIH), which is an analog of the PCP theorem in parameterized complexity, asserts that, there is a constant $\varepsilon> 0$ such that for any computable function $f:\mathbb{N}\to\mathbb{N}$, no $f(k)\cdot n^{O(1)}$-time algorithm can, on input a $k$-variable CSP instance with domain size $n$, find an assignment satisfying ... more >>>


TR24-062 | 5th April 2024
Omar Alrabiah, Venkatesan Guruswami

Near-Tight Bounds for 3-Query Locally Correctable Binary Linear Codes via Rainbow Cycles

Revisions: 1

We prove that a binary linear code of block length $n$ that is locally correctable with $3$ queries against a fraction $\delta > 0$ of adversarial errors must have dimension at most $O_{\delta}(\log^2 n \cdot \log \log n)$. This is almost tight in view of quadratic Reed-Muller codes being a ... more >>>


TR23-188 | 28th November 2023
Venkatesan Guruswami, Bingkai Lin, Xuandi Ren, Yican Sun, Kewen Wu

Parameterized Inapproximability Hypothesis under ETH

The Parameterized Inapproximability Hypothesis (PIH) asserts that no fixed parameter tractable (FPT) algorithm can distinguish a satisfiable CSP instance, parameterized by the number of variables, from one where every assignment fails to satisfy an $\varepsilon$ fraction of constraints for some absolute constant $\varepsilon > 0$. PIH plays the role of ... more >>>


TR23-173 | 15th November 2023
Louis Golowich, Venkatesan Guruswami

Quantum Locally Recoverable Codes

Classical locally recoverable codes, which permit highly efficient recovery from localized errors as well as global recovery from larger errors, provide some of the most useful codes for distributed data storage in practice. In this paper, we initiate the study of quantum locally recoverable codes (qLRCs). In the long ... more >>>


TR23-155 | 25th October 2023
Venkatesan Guruswami, Xuandi Ren, Sai Sandeep

Baby PIH: Parameterized Inapproximability of Min CSP

Revisions: 1

The Parameterized Inapproximability Hypothesis (PIH) is the analog of the PCP theorem in the world of parameterized complexity. It asserts that no FPT algorithm can distinguish a satisfiable 2CSP instance from one which is only $(1-\varepsilon)$-satisfiable (where the parameter is the number of variables) for some constant $0<\varepsilon<1$.

We ... more >>>


TR22-156 | 15th November 2022
Huck Bennett, Mahdi Cheraghchi, Venkatesan Guruswami, Joao Ribeiro

Parameterized Inapproximability of the Minimum Distance Problem over all Fields and the Shortest Vector Problem in all $\ell_p$ Norms

Revisions: 2

We prove that the Minimum Distance Problem (MDP) on linear codes over any fixed finite field and parameterized by the input distance bound is W[1]-hard to approximate within any constant factor. We also prove analogous results for the parameterized Shortest Vector Problem (SVP) on integer lattices. Specifically, we prove that ... more >>>


TR22-102 | 15th July 2022
Venkatesan Guruswami, Xin Lyu, Xiuhan Wang

Range Avoidance for Low-depth Circuits and Connections to Pseudorandomness

In the range avoidance problem, the input is a multi-output Boolean circuit with more outputs than inputs, and the goal is to find a string outside its range (which is guaranteed to exist). We show that well-known explicit construction questions such as finding binary linear codes achieving the Gilbert-Varshamov bound ... more >>>


TR22-101 | 15th July 2022
Omar Alrabiah, Venkatesan Guruswami, Pravesh Kothari, Peter Manohar

A Near-Cubic Lower Bound for 3-Query Locally Decodable Codes from Semirandom CSP Refutation

Revisions: 1

A code $C \colon \{0,1\}^k \to \{0,1\}^n$ is a $q$-locally decodable code ($q$-LDC) if one can recover any chosen bit $b_i$ of the message $b \in \{0,1\}^k$ with good confidence by randomly querying the encoding $x = C(b)$ on at most $q$ coordinates. Existing constructions of $2$-LDCs achieve $n = ... more >>>




ISSN 1433-8092 | Imprint