We prove algorithmic versions of the polynomial Freiman-Ruzsa theorem of Gowers, Green, Manners, and Tao (Annals of Mathematics, 2025) in additive combinatorics. In particular, we give classical and quantum polynomial-time algorithms that, for $A \subseteq \mathbb{F}_2^n$ with doubling constant $K$, learn an explicit description of a subspace $V \subseteq \mathbb{F}_2^n$ ... more >>>
We exhibit a total search problem whose communication complexity in the quantum SMP (simultaneous message passing) model is exponentially smaller than in the classical two-way randomized model. Moreover, the quantum protocol is computationally efficient and its solutions are classically verifiable, that is, the problem lies in the communication analogue of ... more >>>
We revisit the problem of characterising the complexity of Quantum PAC learning, as introduced by Bshouty and Jackson [SIAM J. Comput.
1998, 28, 1136–1153]. Several quantum advantages have been demonstrated in this setting, however, none are generic: they apply to particular concept classes and typically only work when the distribution ...
more >>>