We construct explicit pseudorandom generators that fool $n$-variate polynomials of degree at most $d$ over a finite field $\mathbb{F}_q$. The seed length of our generators is $O(d \log n + \log q)$, over fields of size exponential in $d$ and characteristic at least $d(d-1)+1$. Previous constructions such as Bogdanov's (STOC ... more >>>