We prove that for every odd $q\geq 3$, any $q$-query binary, possibly non-linear locally decodable code ($q$-LDC) $E:\{\pm 1\}^k \rightarrow \{\pm 1\}^n$ must satisfy $k \leq \tilde{O}(n^{1-2/q})$. For even $q$, this bound was established in a sequence of works (Katz and Trevisan (2000), Goldreich, Karloff, Schulman, and Trevisan (2002), and ... more >>>