We prove that hashing $n$ balls into $n$ bins via a random matrix over $GF(2)$ yields expected maximum load $O(\log n / \log \log n)$. This matches the expected maximum load of a fully random function and resolves an open question posed by Alon, Dietzfelbinger, Miltersen, Petrank, and Tardos (STOC ... more >>>
Let $G$ be a finite abelian group and $A$ be a subset of $G \times G$ which is corner--free, meaning that there are no $x, y \in G$ and $d \in G \setminus \{0\}$ such that $(x, y)$, $(x+d, y)$, $(x, y+d) \in A$. We prove that
$|A| \le |G|^2 ...
more >>>