The classical zero-one law for first-order logic on random graphs says that for every first-order property $\varphi$ in the theory of graphs and every $p \in (0,1)$, the probability that the random graph $G(n, p)$ satisfies $\varphi$ approaches either $0$ or $1$ as $n$ approaches infinity. It is well known ... more >>>
Quantified constraint satisfaction is the generalization of
constraint satisfaction that allows for both universal and existential
quantifiers over constrained variables, instead
of just existential quantifiers.
We study quantified constraint satisfaction problems ${\rm CSP}(Q,S)$, where $Q$ denotes
a pattern of quantifier alternation ending in exists or the set of all possible
more >>>
Boolean satisfiability problems are an important benchmark for questions about complexity, algorithms, heuristics and threshold phenomena. Recent work on heuristics, and the satisfiability threshold has centered around the structure and connectivity of the solution space. Motivated by this work, we study structural and connectivity-related properties of the space of solutions ... more >>>
We introduce the notion of a plain basis for a co-clone in Post's lattice. Such a basis is a set of relations B such that every constraint C over a relation in the co-clone is logically equivalent to a conjunction of equalities and constraints over B and the same variables ... more >>>
A dichotomy theorem for a class of decision problems is
a result asserting that certain problems in the class
are solvable in polynomial time, while the rest are NP-complete.
The first remarkable such dichotomy theorem was proved by
T.J. Schaefer in 1978. It concerns the ...
more >>>