Does computing n copies of a function require n times the computational effort? In this work, we
give the first non-trivial answer to this question for the model of randomized communication
complexity.
We show that:
1. Computing n copies of a function requires sqrt{n} times the ... more >>>
While the 3-dimensional analogue of the Sperner problem in the plane was known to be PPAD-complete, the complexity of the 2D-SPERNER itself is not known to be PPAD-complete or not. In this paper, we settle this open problem proposed by Papadimitriou~\cite{PAP90} fifteen years ago. This also allows us to derive ... more >>>
By proving that the problem of computing a $1/n^{\Theta(1)}$-approximate Nash equilibrium remains \textbf{PPAD}-complete, we show that the BIMATRIX game is not likely to have a fully polynomial-time approximation scheme. In other words, no algorithm with time polynomial in $n$ and $1/\epsilon$ can compute an $\epsilon$-approximate Nash equilibrium of an $n\times ... more >>>
We prove that finding the solution of two player Nash Equilibrium is PPAD-complete.
more >>>In this paper, we improve a recent result of Daskalakis, Goldberg and Papadimitriou on PPAD-completeness of 4-Nash, showing that 3-Nash is PPAD-complete.
more >>>