In a seminal paper from 1985, Sistla and Clarke showed
that the model-checking problem for Linear Temporal Logic (LTL) is either NP-complete
or PSPACE-complete, depending on the set of temporal operators used.
If, in contrast, the set of propositional operators is restricted, the complexity may decrease.
...
more >>>
In this paper we will look at restricted versions of the evaluation problem, the model checking problem, the equivalence problem, and the counting problem for quantified propositional formulas, both with and without bound on the number of quantifier alternations. The restrictions are such that we consider formulas in conjunctive normal-form ... more >>>
In a seminal paper from 1985, Sistla and Clarke showed
that satisfiability for Linear Temporal Logic (LTL) is either
NP-complete or PSPACE-complete, depending on the set of temporal
operators used
If, in contrast, the set of propositional operators is restricted, the
complexity may ...
more >>>
We consider constraint satisfaction problems parameterized by the set of allowed constraint predicates. We examine the complexity of quantified constraint satisfaction problems with a bounded number of quantifier alternations and the complexity of the associated counting problems. We obtain classification results that completely solve the Boolean case, and we show ... more >>>
Schaefer proved in 1978 that the Boolean constraint satisfaction problem for a given constraint language is either in P or is NP-complete, and identified all tractable cases. Schaefer's dichotomy theorem actually shows that there are at most two constraint satisfaction problems, up to polynomial-time isomorphism (and these isomorphism types are ... more >>>