Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > AUTHORS > CRISTOPHER MOORE:
All reports by Author Cristopher Moore:

TR08-093 | 1st October 2008
Cristopher Moore, Alexander Russell

A simple constant-probability RP reduction from NP to Parity P

The proof of Toda's celebrated theorem that the polynomial hierarchy is contained in $\P^\numP$ relies on the fact that, under mild technical conditions on the complexity class $\mathcal{C}$, we have $\exists \,\mathcal{C} \subset \BP \cdot \oplus \,\mathcal{C}$. More concretely, there is a randomized reduction which transforms nonempty sets and the ... more >>>


TR04-012 | 19th December 2003
Paul Beame, Joseph Culberson, David Mitchell, Cristopher Moore

The Resolution Complexity of Random Graph $k$-Colorability

We consider the resolution proof complexity of propositional formulas which encode random instances of graph $k$-colorability. We obtain a tradeoff between the graph density and the resolution proof complexity.
For random graphs with linearly many edges we obtain linear-exponential lower bounds on the length of resolution refutations. For any $\epsilon>0$, ... more >>>


TR02-013 | 30th January 2002
Chris Pollett, Farid Ablayev, Cristopher Moore, Chris Pollett

Quantum and Stochastic Programs of Bounded Width

Revisions: 1

We prove upper and lower bounds on the power of quantum and stochastic
branching programs of bounded width. We show any NC^1 language can
be accepted exactly by a width-2 quantum branching program of
polynomial length, in contrast to the classical case where width 5 is
necessary unless \NC^1=\ACC. ... more >>>


TR99-032 | 7th July 1999
Cristopher Moore

Quantum Circuits: Fanout, Parity, and Counting

We propose definitions of $\QAC^0$, the quantum analog of the
classical class $\AC^0$ of constant-depth circuits with AND and OR
gates of arbitrary fan-in, and $\QACC^0[q]$, the analog of the class
$\ACC^0[q]$ where $\Mod_q$ gates are also allowed. We show that it is
possible to make a `cat' state on ... more >>>




ISSN 1433-8092 | Imprint