Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > AUTHORS > XIAOYANG GU:
All reports by Author Xiaoyang Gu:

TR08-037 | 29th February 2008
Xiaoyang Gu, Jack H. Lutz, Elvira Mayordomo

Curves That Must Be Retraced

Revisions: 1

We exhibit a polynomial time computable plane curve GAMMA that has finite length, does not intersect itself, and is smooth except at one endpoint, but has the following property. For every computable parametrization f of GAMMA and every positive integer n, there is some positive-length subcurve of GAMMA that f ... more >>>


TR05-160 | 10th December 2005
Xiaoyang Gu, Jack H. Lutz

Dimension Characterizations of Complexity Classes

We use derandomization to show that sequences of positive $\pspace$-dimension -- in fact, even positive $\Delta^\p_k$-dimension
for suitable $k$ -- have, for many purposes, the full power of random oracles. For example, we show that, if $S$ is any binary sequence whose $\Delta^p_3$-dimension is positive, then $\BPP\subseteq \P^S$ and, moreover, ... more >>>


TR05-157 | 10th December 2005
Xiaoyang Gu, Jack H. Lutz, Elvira Mayordomo

Points on Computable Curves

The ``analyst's traveling salesman theorem'' of geometric
measure theory characterizes those subsets of Euclidean
space that are contained in curves of finite length.
This result, proven for the plane by Jones (1990) and
extended to higher-dimensional Euclidean spaces by
Okikiolu (1991), says that a bounded set $K$ is contained
more >>>


TR05-089 | 30th July 2005
Xiaoyang Gu, Jack H. Lutz, Philippe Moser

Dimensions of Copeland-Erdos Sequences

The base-$k$ {\em Copeland-Erd\"os sequence} given by an infinite
set $A$ of positive integers is the infinite
sequence $\CE_k(A)$ formed by concatenating the base-$k$
representations of the elements of $A$ in numerical
order. This paper concerns the following four
quantities.
\begin{enumerate}[$\bullet$]
\item
The {\em finite-state dimension} $\dimfs (\CE_k(A))$,
a finite-state ... more >>>


TR04-047 | 22nd April 2004
Xiaoyang Gu

A note on dimensions of polynomial size circuits

In this paper, we use resource-bounded dimension theory to investigate polynomial size circuits. We show that for every $i\geq 0$, $\Ppoly$ has $i$th order scaled $\pthree$-strong dimension $0$. We also show that $\Ppoly^\io$ has $\pthree$-dimension $1/2$, $\pthree$-strong dimension $1$. Our results improve previous measure results of Lutz (1992) and dimension ... more >>>




ISSN 1433-8092 | Imprint