We give an $O(N\cdot \log N\cdot 2^{O(\log^*N)})$ algorithm for
multiplying two $N$-bit integers that improves the $O(N\cdot \log
N\cdot \log\log N)$ algorithm by
Sch\"{o}nhage-Strassen. Both these algorithms use modular
arithmetic. Recently, F\"{u}rer gave an $O(N\cdot \log
N\cdot 2^{O(\log^*N)})$ algorithm which however uses arithmetic over
complex numbers as opposed to ...
more >>>
In this paper we study the complexity of Bounded Color
Multiplicity Graph Isomorphism (BCGI): the input is a pair of
vertex-colored graphs such that the number of vertices of a given
color in an input graph is bounded by $b$. We show that BCGI is in the
#L hierarchy ...
more >>>
Given a polynomial f(X) with rational coefficients as input
we study the problem of (a) finding the order of the Galois group of
f(X), and (b) determining the Galois group of f(X) by finding a small
generator set. Assuming the generalized Riemann hypothesis, we prove
the following complexity bounds:
1. ... more >>>
We show that Graph Isomorphism is in the complexity class
SPP, and hence it is in $\ParityP$ (in fact, it is in $\ModkP$ for
each $k\geq 2$). We derive this result as a corollary of a more
general result: we show that a {\em generic problem} $\FINDGROUP$ has
an $\FP^{\SPP}$ ...
more >>>