We show that the multi-commodity max-flow/min-cut gap for series-parallel graphs can be as bad as 2, matching a recent upper bound by Chakrabarti.et.al for this class, and resolving one side of a conjecture of Gupta, Newman, Rabinovich, and Sinclair.
This also improves the largest known gap for planar graphs ... more >>>
We give an explicit (in particular, deterministic polynomial time)
construction of subspaces $X
\subseteq \R^N$ of dimension $(1-o(1))N$ such that for every $x \in X$,
$$(\log N)^{-O(\log\log\log N)} \sqrt{N}\, \|x\|_2 \leq \|x\|_1 \leq \sqrt{N}\, \|x\|_2.$$
If we are allowed to use $N^{1/\log\log N}\leq N^{o(1)}$ random bits
and ...
more >>>