We study the approximability of predicates on $k$ variables from a
domain $[q]$, and give a new sufficient condition for such predicates
to be approximation resistant under the Unique Games Conjecture.
Specifically, we show that a predicate $P$ is approximation resistant
if there exists a balanced pairwise independent distribution over
more >>>
We show that, assuming the Unique Games Conjecture, it is NP-hard to approximate Max 2-Sat within $\alpha_{LLZ}^{-}+\epsilon$, where $0.9401 < \alpha_{LLZ}^{-} < 0.9402$ is the believed approximation ratio of the algorithm of Lewin, Livnat and Zwick.
This result is surprising considering the fact that balanced instances of Max 2-Sat, i.e. ... more >>>