Knowledge extraction is a fundamental notion, modeling knowledge possession in a computational complexity sense. The notion provides a tool for cryptographic protocol design and analysis, enabling one to argue about the internal state of protocol players. We define and
investigate the relative power of the notion of ``concurrent knowledge-extraction'' ...
more >>>
We present constant-round concurrently secure (sound) resettable
zero-knowledge (rZK-CS) arguments in the bare public-key (BPK)
model. Our constructions deal with general NP ZK-arguments as well
as with highly efficient ZK-arguments for number-theoretic
languages, most relevant to identification scenarios. These are the
first constant-round protocols of ...
more >>>
We investigate the decoding problem of Reed-Solomon Codes (aka: the Polynomial Reconstruction Problem -- PR) from a cryptographic hardness perspective. First, following the standard methodology for constructing cryptographically strong primitives, we formulate a decisional intractability assumption related to the PR problem. Then, based on this assumption we show: (i) hardness ... more >>>