It is known that finding a Nash equilibrium for win-lose bimatrix
games, i.e., two-player games where the players' payoffs are zero
and one, is complete for the class PPAD.
We describe a linear time algorithm which computes a Nash
equilibrium for win-lose bimatrix games where the number of winning
positions ...
more >>>
We give a reduction from any two-player game to a special case of
the Leontief exchange economy, with the property that the Nash equilibria of the game and the
equilibria of the market are in one-to-one correspondence.
Our reduction exposes a potential hurdle inherent in solving certain
families of market ...
more >>>
The Lov\'asz theta function $\theta(G)$ of a graph $G$ has attracted a lot of attention for its connection with diverse issues, such as communicating without errors and computing large cliques in graphs. Indeed this function enjoys the remarkable property of being computable in polynomial time, despite being sandwitched between clique ... more >>>
We show that for several natural classes of ``structured'' matrices, including symmetric, circulant, Hankel and Toeplitz matrices, approximating the permanent modulo a prime $p$ is as hard as computing the exact value. Results of this kind are well known for the class of arbitrary matrices; however the techniques used do ... more >>>
We consider the conjecture stating that a matrix with rank
$o(n)$ and ones on the main diagonal must contain nonzero
entries on a $2\times 2$ submatrix with one entry on the main
diagonal. We show that a slightly stronger conjecture implies
that ...
more >>>