The computational complexity of learning from binary examples is
investigated for linear threshold neurons. We introduce
combinatorial measures that create classes of infinitely many
learning problems with sample restrictions. We analyze how the
complexity of these problems depends on the values for the measures.
...
more >>>
We study networks of spiking neurons that use the timing of pulses
to encode information. Nonlinear interactions model the spatial
groupings of synapses on the dendrites and describe the computations
performed at local branches. We analyze the question of how many
examples these networks must ...
more >>>
Local receptive field neurons comprise such well-known and widely
used unit types as radial basis function neurons and neurons with
center-surround receptive field. We study the Vapnik-Chervonenkis
(VC) dimension of feedforward neural networks with one hidden layer
of these units. For several variants of local receptive field
neurons we show ...
more >>>
In a great variety of neuron models neural inputs are
combined using the summing operation. We introduce the concept of
multiplicative neural networks which contain units that multiply
their inputs instead of summing them and, thus, allow inputs to
interact nonlinearly. The class of multiplicative networks
comprises such widely known ...
more >>>
We calculate lower bounds on the size of sigmoidal neural networks
that approximate continuous functions. In particular, we show that
for the approximation of polynomials the network size has to grow
as $\Omega((\log k)^{1/4})$ where $k$ is the degree of the polynomials.
This bound is ...
more >>>
A neural network is said to be nonoverlapping if there is at most one
edge outgoing from each node. We investigate the number of examples
that a learning algorithm needs when using nonoverlapping neural
networks as hypotheses. We derive bounds for this sample complexity
in terms of the Vapnik-Chervonenkis dimension. ...
more >>>
Spiking neurons are models for the computational units in
biological neural systems where information is considered to be encoded
mainly in the temporal pattern of their activity. In a network of
spiking neurons a new set of parameters becomes relevant which has no
counterpart in traditional ...
more >>>