We give the first exponential separation between quantum and bounded-error randomized one-way communication complexity. Specifically, we define the Hidden Matching Problem HM_n: Alice gets as input a string x in {0,1}^n and Bob gets a perfect matching M on the n coordinates. Bob's goal is to output a tuple (i,j,b) ... more >>>
We present a novel technique, based on the Jensen-Shannon divergence
from information theory, to prove lower bounds on the query complexity
of sampling algorithms that approximate functions over arbitrary
domain and range. Unlike previous methods, our technique does not
use a reduction from a binary decision problem, but rather ...
more >>>
This paper initiates the study of deterministic amplification of space
bounded probabilistic algorithms. The straightforward implementations of
known amplification methods cannot be used for such algorithms, since they
consume too much space. We present a new implementation of the
Ajtai-Koml\'{o}s-Szemer\'{e}di method, that enables to amplify an $S$ ...
more >>>
We consider the well known problem of determining the k'th
vertex reached by chasing pointers in a directed graph of
out-degree 1. The famous "pointer doubling" technique
provides an O(log k) parallel time algorithm on a
Concurrent-Read Exclusive-Write (CREW) PRAM. We prove that ...
more >>>