We study bounded degree graph problems, mainly the problem of
k-Dimensional Matching \emph{(k-DM)}, namely, the problem of
finding a maximal matching in a k-partite k-uniform balanced
hyper-graph. We prove that k-DM cannot be efficiently approximated
to within a factor of $ O(\frac{k}{ \ln k}) $ unless $P = NP$.
This ...
more >>>
We show Minimum Vertex Cover NP-hard to approximate to within a factor
of 1.3606. This improves on the previously known factor of 7/6.
Finding explicit extractors is an important derandomization goal that has received a lot of attention in the past decade. This research has focused on two approaches, one related to hashing and the other to pseudorandom generators. A third view, regarding extractors as good error correcting codes, was noticed before. Yet, ... more >>>
This paper strengthens the low-error PCP characterization of NP, coming
closer to the ultimate BGLR conjecture. Namely, we prove that witnesses for
membership in any NP language can be verified with a constant
number of accesses, and with an error probability exponentially
small in the ...
more >>>
This paper shows finding the closest vector in a lattice
to be NP-hard to approximate to within any factor up to
$2^{(\log{n})^{1-\epsilon}}$ where
$\epsilon = (\log\log{n})^{-\alpha}$
and $\alpha$ is any positive constant $<{1\over 2}$.