Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > AUTHORS > STEFAN S. DANTCHEV:
All reports by Author Stefan S. Dantchev:

TR07-001 | 19th November 2006
Stefan S. Dantchev, Barnaby Martin, Stefan Szeider

Parameterized Proof Complexity: a Complexity Gap for Parameterized Tree-like Resolution

Revisions: 2

We propose a proof-theoretic approach for gaining evidence that certain parameterized problems are not fixed-parameter tractable. We consider proofs that witness that a given propositional formula cannot be satisfied by a truth assignment that sets at most k variables to true, considering k as the parameter. One could separate the ... more >>>


TR00-017 | 3rd March 2000
Valentin E. Brimkov, Stefan S. Dantchev

On the Algebraic Complexity of Integer Programming

In the framework of the Blum-Shub-Smale real number model \cite{BSS}, we study the {\em algebraic complexity} of the integer linear programming problem
(ILP$_{\bf R}$) : Given a matrix $A \in {\bf R}^{m \times n}$ and vectors
$b \in {\bf R}^m$, $d \in {\bf R}^n$, decide if there is $x ... more >>>


TR98-015 | 16th January 1998
Valentin E. Brimkov, Stefan S. Dantchev

Lower Bounds, "Pseudopolynomial" and Approximation Algorithms for the Knapsack Problem with Real Coefficients

In this paper we study the Boolean Knapsack problem (KP$_{{\bf R}}$)
$a^Tx=1$, $x \in \{0,1\}^n$ with real coefficients, in the framework
of the Blum-Shub-Smale real number computational model \cite{BSS}.
We obtain a new lower bound
$\Omega \left( n\log n\right) \cdot f(1/a_{\min})$ for the time
complexity ... more >>>




ISSN 1433-8092 | Imprint