We give a 1.25 approximation algorithm for the Steiner Tree Problem with distances one and two, improving on the best known bound for that problem.
more >>>The bandwidth problem is the problem of numbering the vertices of a
given graph $G$ such that the maximum difference between the numbers
of adjacent vertices is minimal. The problem has a long history and
is known to be NP-complete Papadimitriou [Pa76]. Only few special
cases ...
more >>>
We study dense instances of several covering problems. An instance of
the set cover problem with $m$ sets is dense if there is $\epsilon>0$
such that any element belongs to at least $\epsilon m$ sets. We show
that the dense set cover problem can be approximated with ...
more >>>
The Steiner tree problem asks for the shortest tree connecting
a given set of terminal points in a metric space. We design
new approximation algorithms for the Steiner tree problems
using a novel technique of choosing Steiner points in dependence
on the possible deviation from ...
more >>>
The Steiner tree problem requires to find a shortest tree connection
a given set of terminal points in a metric space. We suggest a better
and fast heuristic for the Steiner problem in graphs and in
rectilinear plane. This heuristic finds a Steiner tree at ...
more >>>