This paper presents the first Distributed Oblivious RAM (DORAM) protocol that achieves sub-logarithmic communication overhead without computational assumptions.
That is, given $n$ $d$-bit memory locations, we present an information-theoretically secure protocol which requires $o(d \cdot \log(n))$ bits of communication per access (when $d = \Omega(\log^2(n)$).
This comes as a surprise, ... more >>>
We introduce tri-state circuits (TSCs). TSCs form a natural model of computation that, to our knowledge, has not been considered by theorists. The model captures a surprising combination of simplicity and power. TSCs are simple in that they allow only three wire values ($0$,$1$, and undefined – $Z$) and three ... more >>>
Garbled RAM, introduced by Lu and Ostrovsky, enables the task of garbling a RAM (Random Access Machine) program directly, there by avoiding the inefficient process of first converting it into a circuit. Garbled RAM can be seen as a RAM analogue of Yao's garbled circuit construction, except that known realizations ... more >>>
Let $G:\{0,1\}^n\to\{0,1\}^m$ be a pseudorandom generator. We say that a circuit implementation of $G$ is $(k,q)$-robust if for every set $S$ of at most $k$ wires anywhere in the circuit, there is a set $T$ of at most $q|S|$ outputs, such that conditioned on the values of $S$ and $T$ ... more >>>
In FOCS 2001, Barak, Goldreich, Goldwasser and Lindell conjectured that the existence of ZAPs, introduced by Dwork and Naor in FOCS 2000, could lead to the design of a zero-knowledge proof system that is secure against both resetting provers and resetting verifiers. Their conjecture has been proven true by Deng, ... more >>>
Error correction and message authentication are well studied in the literature, and various efficient solutions have been suggested and analyzed. This is however not the case for data streams in which the message is very long, possibly infinite, and not known in advance to the sender. Trivial solutions for error-correcting ... more >>>
This work considers locally decodable codes in the computationally bounded channel model. The computationally bounded channel model, introduced by Lipton in 1994, views the channel as an adversary which is restricted to polynomial-time computation. Assuming the existence of IND-CPA secure public-key encryption, we present a construction of public-key locally decodable ... more >>>
Injective one-way trapdoor functions are one of the most fundamental cryptographic primitives. In this work we give a novel construction of injective trapdoor functions based on oblivious transfer for long strings.
Our main result is to show that any 2-message statistically sender-private semi-honest oblivious transfer (OT) for ...
more >>>
In STOC '08, Peikert and Waters introduced a powerful new primitive called Lossy Trapdoor Functions (LTDFs). Since their introduction, lossy trapdoor functions have found many uses in cryptography. In the work of Peikert and Waters, lossy trapdoor functions were used to give an efficient construction of a chosen-ciphertext secure ... more >>>
It is well known that proving the security of a key agreement protocol (even in a special case where the protocol transcript looks random to an outside observer) is at least as difficult as proving $P \not = NP$. Another (seemingly unrelated) statement in cryptography is the existence of two ... more >>>
In cryptography, there has been tremendous success in building
primitives out of homomorphic semantically-secure encryption
schemes, using homomorphic properties in a black-box way. A few
notable examples of such primitives include items like private
information retrieval schemes and collision-resistant hash functions. In this paper, we illustrate a general
methodology for ...
more >>>
In this paper, we introduce the notion of a Public-Key Encryption (PKE) Scheme that is also a Locally-Decodable Error-Correcting Code.
In particular, our construction simultaneously satisfies all of the following properties:
\begin{itemize}
\item
Our Public-Key Encryption is semantically secure under a certain number-theoretic hardness assumption
...
more >>>
In the last decade, the notion of metric embeddings with
small distortion received wide attention in the literature, with
applications in combinatorial optimization, discrete mathematics, functional
analysis and bio-informatics. The notion of embedding is, given two metric
spaces on the same number of points, to find a bijection that minimizes
more >>>
One of the central questions in Cryptography today is proving security of the protocols ``on the Internet'', i.e., in a concurrent setting where there are multiple interactions between players, and where the adversary can play so called ``man-in-the-middle'' attacks, forwarding and modifying messages between two or more unsuspecting players. Indeed, ... more >>>
Non-interactive zero-knowledge (NIZK) systems are
fundamental cryptographic primitives used in many constructions,
including CCA2-secure cryptosystems, digital signatures, and various
cryptographic protocols. What makes them especially attractive, is
that they work equally well in a concurrent setting, which is
notoriously hard for interactive zero-knowledge protocols. However,
while for interactive zero-knowledge we ...
more >>>
We study the computational complexity of languages which have
interactive proofs of logarithmic knowledge complexity. We show that
all such languages can be recognized in ${\cal BPP}^{\cal NP}$. Prior
to this work, for languages with greater-than-zero knowledge
complexity (and specifically, even for knowledge complexity 1) only
trivial computational complexity bounds ...
more >>>