We study close connections between Indistinguishability Obfuscation ($IO$) and the Minimum Circuit Size Problem ($MCSP$), and argue that algorithms for one of $MCSP$ or $IO$ would empower the other one. Some of our main results are:
\begin{itemize}
\item If there exists a perfect (imperfect) $IO$ that is computationally secure ...
more >>>
Connections between proof complexity and circuit complexity have become major tools for obtaining lower bounds in both areas. These connections -- which take the form of interpolation theorems and query-to-communication lifting theorems -- translate efficient proofs into small circuits, and vice versa, allowing tools from one area to be applied ... more >>>
For every prime p > 0, every n > 0 and ? = O(logn), we show the existence
of an unsatisfiable system of polynomial equations over O(n log n) variables of degree O(log n) such that any Polynomial Calculus refutation over F_p with M extension variables, each depending on at ...
more >>>
The Stabbing Planes proof system was introduced to model the reasoning carried out in practical mixed integer programming solvers. As a proof system, it is powerful enough to simulate Cutting Planes and to refute the Tseitin formulas -- certain unsatisfiable systems of linear equations mod 2 -- which are canonical ... more >>>
Computational pseudorandomness studies the extent to which a random variable $\bf{Z}$ looks like the uniform distribution according to a class of tests $\cal{F}$. Computational entropy generalizes computational pseudorandomness by studying the extent which a random variable looks like a \emph{high entropy} distribution. There are different formal definitions of computational entropy ... more >>>
We prove an easy-witness lemma ($\ewl$) for unambiguous non-deterministic verfiers. We show that if $\utime(t)\subset\mathcal{C}$, then for every $L\in\utime(t)$, for every $\utime(t)$ verifier $V$ for $L$, and for every $x\in L$, there is a certificate $y$ satisfing $V(x,y)=1$, that can be encoded as a truth-table of a $\mathcal{C}$ circuit. Our ... more >>>
A major open problem in proof complexity is to prove super-polynomial lower bounds for AC^0[p]-Frege proofs. This system is the analog of AC^0[p], the class of bounded depth circuits with prime modular counting gates. Despite strong lower bounds for this class dating back thirty years (Razborov, '86 and Smolensky, '87), ... more >>>
Minimum Circuit Size Problem (MCSP) asks to decide if a given truth table of an $n$-variate boolean function has circuit complexity less than a given parameter $s$. We prove that MCSP is hard for constant-depth circuits with mod $p$ gates, for any prime $p\geq 2$ (the circuit class $AC^0[p])$. Namely, ... more >>>
The class of model checking for first-order formulas on sparse graphs has a complete problem with respect to fine-grained reductions, Orthogonal Vectors (OV) [GIKW17]. This paper studies extensions of this class or more lenient parameterizations. We consider classes obtained by allowing function symbols;
first-order on ordered structures; adding various notions ...
more >>>
We show that proving mildly super-linear lower bounds on non-commutative arithmetic circuits implies exponential lower bounds on non-commutative circuits. That is, non-commutative circuit complexity is a threshold phenomenon: an apparently weak lower bound actually suffices to show the strongest lower bounds we could desire.
This is part of a recent ... more >>>
We show that popular hardness conjectures about problems from the field of fine-grained complexity theory imply structural results for resource-based complexity classes. Namely, we show that if either k-Orthogonal Vectors or k-CLIQUE requires $n^{\epsilon k}$ time, for some constant $\epsilon > 1/2$, to count (note that these conjectures are significantly ... more >>>
Suppose Alice and Bob are communicating bits to each other in order to compute some function $f$, but instead of a classical communication channel they have a pair of walkie-talkie devices. They can use some classical communication protocol for $f$ where each round one player sends bit and the other ... more >>>
We introduce and develop a new semi-algebraic proof system, called Stabbing Planes that is in the style of DPLL-based modern SAT solvers. As with DPLL, there is only one rule: the current polytope can be subdivided by
branching on an inequality and its "integer negation.'' That is, we can (nondeterministically ...
more >>>
The Black-Box Hypothesis, introduced by Barak et al. (JACM, 2012), states that any property of boolean functions decided efficiently (e.g., in BPP) with inputs represented by circuits can also be decided efficiently in the black-box setting, where an algorithm is given an oracle access to the input function and an ... more >>>
We study the power of randomized complexity classes that are given oracle access to a natural property of Razborov and Rudich (JCSS, 1997) or its special case, the Minimal Circuit Size Problem (MCSP).
We obtain new circuit lower bounds, as well as some hardness results for the relativized version ...
more >>>
Fine-grained reductions, introduced by Vassilevska-Williams and Williams, preserve any improvement in the known algorithms. These have been used very successfully in relating the exact complexities of a wide range of problems, from NP-complete problems like SAT to important quadratic time solvable problems within P such as Edit Distance. However, until ... more >>>
Impagliazzo and Wigderson showed that if $\text{E}=\text{DTIME}(2^{O(n)})$ requires size $2^{\Omega(n)}$ circuits, then
every time $T$ constant-error randomized algorithm can be simulated deterministically in time $\poly(T)$. However, such polynomial slowdown is a deal breaker when $T=2^{\alpha \cdot n}$, for a constant $\alpha>0$, as is the case for some randomized algorithms for ...
more >>>
Circuit analysis algorithms such as learning, SAT, minimum circuit size, and compression imply circuit lower bounds. We show a generic implication in the opposite direction: natural properties (in the sense of Razborov and Rudich) imply randomized learning and compression algorithms. This is the first such implication outside of the derandomization ... more >>>
We introduce the Nondeterministic Strong Exponential Time Hypothesis
(NSETH) as a natural extension of the Strong Exponential Time
Hypothesis (SETH). We show that both refuting and proving
NSETH would have interesting consequences.
In particular we show that disproving NSETH would ...
more >>>
We give an exact algorithm for the 0-1 Integer Linear Programming problem with a linear number of constraints that improves over exhaustive search by an exponential factor. Specifically, our algorithm runs in time $2^{(1-\text{poly}(1/c))n}$ where $n$ is the
number of variables and $cn$ is the number of constraints. The key ...
more >>>
We introduce and study a new model of interactive proofs: AM(k), or Arthur-Merlin with k non-communicating Merlins. Unlike with the better-known MIP, here the assumption is that each Merlin receives an independent random challenge from Arthur. One motivation for this model (which we explore in detail) comes from the close ... more >>>
For Boolean functions computed by de Morgan formulas of subquadratic size or read-once de Morgan formulas, we prove a sharp concentration of the Fourier mass on ``small-degree'' coefficients. For a Boolean function $f:\{0,1\}^n\to\{1,-1\}$ computable by a de Morgan formula of size $s$, we show that
\[
\sum_{A\subseteq [n]\; :\; |A|>s^{1/\Gamma ...
more >>>
One powerful theme in complexity theory and pseudorandomness in the past few decades has been the use of lower bounds to give pseudorandom generators (PRGs). However, the general results using this hardness vs. randomness paradigm suffer a quantitative loss in parameters, and hence do not give nontrivial implications for models ... more >>>
There has been considerable interest lately in the complexity of distributions. Recently, Lovett and Viola (CCC 2011) showed that the statistical distance between a uniform distribution over a good code, and any distribution which can be efficiently sampled by a small bounded-depth AC0 circuit, is inverse-polynomially close to one. That ... more >>>
We give the first time-space tradeoff lower bounds for Resolution proofs that apply to superlinear space. In particular, we show that there are formulas of size $N$ that have Resolution refutations of space and size each roughly $N^{\log_2 N}$ (and like all formulas have Resolution refutations of space $N$) for ... more >>>
We give a simple combinatorial proof of the Chernoff-Hoeffding concentration bound~\cite{Chernoff, Hof63}, which says that the sum of independent $\{0,1\}$-valued random variables is highly concentrated around the expected value. Unlike the standard proofs,
our proof does not use the method of higher moments, but rather uses a simple ...
more >>>
We present two new approximation algorithms for Unique Games. The first generalizes the results of Arora, Khot, Kolla, Steurer, Tulsiani, and Vishnoi who give polynomial time approximation algorithms for graphs with high conductance. We give a polynomial time algorithm assuming only good local conductance, i.e. high conductance for small subgraphs. ... more >>>
The “direct product code” of a function f gives its values on all k-tuples (f(x1), . . . , f(xk)).
This basic construct underlies “hardness amplification” in cryptography, circuit complexity and
PCPs. Goldreich and Safra [GS00] pioneered its local testing and its PCP application. A recent
result by Dinur and ...
more >>>
We propose a model called priority branching trees (pBT ) for backtracking and dynamic
programming algorithms. Our model generalizes both the priority model of Borodin, Nielson
and Rackoff, as well as a simple dynamic programming model due to Woeginger, and hence
spans a wide spectrum of algorithms. After witnessing the ...
more >>>
The classical Direct-Product Theorem for circuits says
that if a Boolean function $f:\{0,1\}^n\to\{0,1\}$ is somewhat hard
to compute on average by small circuits, then the corresponding
$k$-wise direct product function
$f^k(x_1,\dots,x_k)=(f(x_1),\dots,f(x_k))$ (where each
$x_i\in\{0,1\}^n$) is significantly harder to compute on average by
slightly smaller ...
more >>>
We consider extensions of the DPLL approach to satisfiability testing that add a version of memoization, in which formulas that the algorithm has previously shown to be unsatisfiable are remembered for later use. Such formula caching algorithms have been suggested for satisfiability and stochastic satisfiability. We formalize these methods by ... more >>>
Diagonalization is a powerful technique in recursion theory and in
computational complexity \cite{For00}. The limits of this technique are
not clear. On the one hand, many people argue that conflicting
relativizations mean a complexity question cannot be resolved using only
diagonalization. On the other hand, it is not clear that ...
more >>>
Borodin, Nielsen, and Rackoff gave a model of greedy-like algorithms for scheduling problems and Angelopoulos and Borodin extended their work to facility location and set cover problems. We generalize their notion to include other optimization problems, and apply the generalized framework to graph problems. Our goal is to define an ... more >>>
We study the complexity of solving succinct zero-sum games,
i.e., the
games whose payoff matrix $M$ is given implicitly by a Boolean circuit
$C$ such that $M(i,j)=C(i,j)$. We complement the known $\EXP$-hardness
of computing the \emph{exact} value of a succinct zero-sum game by
several results on \emph{approximating} the value. (1) ...
more >>>
We show that derandomizing Polynomial Identity Testing is,
essentially, equivalent to proving circuit lower bounds for
NEXP. More precisely, we prove that if one can test in polynomial
time (or, even, nondeterministic subexponential time, infinitely
often) whether a given arithmetic circuit over integers computes an
identically zero polynomial, then either ...
more >>>
Informally, an <i>obfuscator</i> <b>O</b> is an (efficient, probabilistic)
"compiler" that takes as input a program (or circuit) <b>P</b> and
produces a new program <b>O(P)</b> that has the same functionality as <b>P</b>
yet is "unintelligible" in some sense. Obfuscators, if they exist,
would have a wide variety of cryptographic ...
more >>>
We give the first construction of a pseudo-random generator with
optimal seed length that uses (essentially) arbitrary hardness.
It builds on the novel recursive use of the NW-generator in
a previous paper by the same authors, which produced many optimal
generators one of which was pseudo-random. This is achieved ...
more >>>
We present the best known separation
between tree-like and general resolution, improving
on the recent $\exp(n^\epsilon)$ separation of \cite{BEGJ98}.
This is done by constructing a natural family of contradictions, of
size $n$, that have $O(n)$-size resolution
refutations, but only $\exp (\Omega(n/\log n))$-size tree-like refutations.
This result ...
more >>>
Razborov~\cite{Razborov96} recently proved that polynomial
calculus proofs of the pigeonhole principle $PHP_n^m$ must have
degree at least $\ceiling{n/2}+1$ over any field. We present a
simplified proof of the same result. The main
idea of our proof is the same as in the original proof
of Razborov: we want to describe ...
more >>>