The existence of "unstructured" hard languages in $\text{NP}\cap\text{coNP}$ is an intriguing open question. Bennett and Gill (SICOMP, 1981) asked whether $\text{P}$ is separated from $\text{NP}\cap\text{coNP}$ relative to a random oracle, a question that remained open ever since. While a hard language in $\text{NP}\cap\text{coNP}$ can be constructed in a black-box way ... more >>>
In this work, we show how to construct indistinguishability obfuscation from subexponential hardness of four well-founded assumptions. We prove:
Let $\tau \in (0,\infty), \delta \in (0,1), \epsilon \in (0,1)$ be arbitrary constants. Assume sub-exponential security of the following assumptions, where $\lambda$ is a security parameter, and the parameters $\ell,k,n$ below ... more >>>
In this work, we consider the natural goal of designing secret sharing schemes that ensure security against a powerful adaptive adversary who may learn some ``leaked'' information about all the shares. We say that a secret sharing scheme is $p$-party leakage-resilient, if the secret remains statistically hidden even after an ... more >>>
We construct a delegation scheme for verifying non-deterministic computations, with complexity proportional only to the non-deterministic space of the computation. Specifi cally, letting $n$ denote the input length, we construct a delegation scheme for any language veri fiable in non-deterministic time and space $(T(n);S(n))$ with communication complexity $poly(S(n))$, verifi er ... more >>>
Despite over 25 years of research on non-malleable commitments in the plain model, their round complexity has remained open. The goal of achieving non-malleable commitment protocols with only one or two rounds has been especially elusive. Pass (TCC 2013, CC 2016) captured this difficulty by proving important impossibility results regarding ... more >>>
Let $G:\{0,1\}^n\to\{0,1\}^m$ be a pseudorandom generator. We say that a circuit implementation of $G$ is $(k,q)$-robust if for every set $S$ of at most $k$ wires anywhere in the circuit, there is a set $T$ of at most $q|S|$ outputs, such that conditioned on the values of $S$ and $T$ ... more >>>
Motivated by the question of basing cryptographic protocols on stateless tamper-proof hardware tokens, we revisit the question of unconditional two-prover zero-knowledge proofs for $NP$. We show that such protocols exist in the {\em interactive PCP} model of Kalai and Raz (ICALP '08), where one of the provers is replaced by ... more >>>
Non-interactive zero-knowledge proofs and non-interactive witness-indistinguishable proofs have played a significant role in the theory of cryptography. However, lack of efficiency has prevented them from being used in practice. One of the roots of this inefficiency is that non-interactive zero-knowledge proofs have been constructed for general NP-complete languages such as ... more >>>
In the last decade, the notion of metric embeddings with
small distortion received wide attention in the literature, with
applications in combinatorial optimization, discrete mathematics, functional
analysis and bio-informatics. The notion of embedding is, given two metric
spaces on the same number of points, to find a bijection that minimizes
more >>>
Non-interactive zero-knowledge (NIZK) systems are
fundamental cryptographic primitives used in many constructions,
including CCA2-secure cryptosystems, digital signatures, and various
cryptographic protocols. What makes them especially attractive, is
that they work equally well in a concurrent setting, which is
notoriously hard for interactive zero-knowledge protocols. However,
while for interactive zero-knowledge we ...
more >>>
We construct a secure protocol for any multi-party functionality
that remains secure (under a relaxed definition of security) when
executed concurrently with multiple copies of itself and other
protocols. We stress that we do *not* use any assumptions on
existence of trusted parties, common reference string, honest
majority or synchronicity ...
more >>>
We provide <i>unconditional</i> constructions of <i>concurrent</i>
statistical zero-knowledge proofs for a variety of non-trivial
problems (not known to have probabilistic polynomial-time
algorithms). The problems include Graph Isomorphism, Graph
Nonisomorphism, Quadratic Residuosity, Quadratic Nonresiduosity, a
restricted version of Statistical Difference, and approximate
versions of the (<b>coNP</b> forms of the) Shortest Vector ...
more >>>
Informally, an <i>obfuscator</i> <b>O</b> is an (efficient, probabilistic)
"compiler" that takes as input a program (or circuit) <b>P</b> and
produces a new program <b>O(P)</b> that has the same functionality as <b>P</b>
yet is "unintelligible" in some sense. Obfuscators, if they exist,
would have a wide variety of cryptographic ...
more >>>
We present the first complete problem for SZK, the class of (promise)
problems possessing statistical zero-knowledge proofs (against an
honest verifier). The problem, called STATISTICAL DIFFERENCE, is to
decide whether two efficiently samplable distributions are either
statistically close or far apart. This gives a new characterization
of SZK that makes ...
more >>>
We extend the study of non-interactive statistical zero-knowledge
proofs. Our main focus is to compare the class NISZK of problems
possessing such non-interactive proofs to the class SZK of problems
possessing interactive statistical zero-knowledge proofs. Along these
lines, we first show that if statistical zero knowledge is non-trivial
then so ...
more >>>