Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > AUTHORS > HERIBERT VOLLMER:
All reports by Author Heribert Vollmer:

TR12-079 | 14th June 2012
Olaf Beyersdorff, Samir Datta, Andreas Krebs, Meena Mahajan, Gido Scharfenberger-Fabian, Karteek Sreenivasaiah, Michael Thomas, Heribert Vollmer

Verifying Proofs in Constant Depth

In this paper we initiate the study of proof systems where verification of proofs proceeds by NC0 circuits. We investigate the question which languages admit proof systems in this very restricted model. Formulated alternatively, we ask which languages can be enumerated by NC0 functions. Our results show that the answer ... more >>>


TR10-101 | 25th June 2010
Samir Datta, Meena Mahajan, Raghavendra Rao B V, Michael Thomas, Heribert Vollmer

Counting Classes and the Fine Structure between NC$^1$ and L.

The class NC$^1$ of problems solvable by bounded fan-in circuit families of logarithmic depth is known to be contained in logarithmic space L, but not much about the converse is known. In this paper we examine the structure of classes in between NC$^1$ and L based on counting functions or, ... more >>>


TR08-028 | 5th December 2007
Michael Bauland, Martin Mundhenk, Thomas Schneider, Henning Schnoor, Ilka Schnoor, Heribert Vollmer

The Tractability of Model-Checking for LTL: The Good, the Bad, and the Ugly Fragments

In a seminal paper from 1985, Sistla and Clarke showed
that the model-checking problem for Linear Temporal Logic (LTL) is either NP-complete
or PSPACE-complete, depending on the set of temporal operators used.
If, in contrast, the set of propositional operators is restricted, the complexity may decrease.
... more >>>


TR07-045 | 24th April 2007
Heribert Vollmer

The complexity of deciding if a Boolean function can be computed by circuits over a restricted basis

We study the complexity of the following algorithmic problem: Given a Boolean function $f$ and a finite set of Boolean functions $B$, decide if there is a circuit with basis $B$ that computes $f$. We show that if both $f$ and all functions in $B$ are given by their truth-table, ... more >>>


TR07-023 | 26th February 2007
Heribert Vollmer, Michael Bauland, Elmar Böhler, Nadia Creignou, Steffen Reith, Henning Schnoor

The Complexity of Problems for Quantified Constraints

In this paper we will look at restricted versions of the evaluation problem, the model checking problem, the equivalence problem, and the counting problem for quantified propositional formulas, both with and without bound on the number of quantifier alternations. The restrictions are such that we consider formulas in conjunctive normal-form ... more >>>


TR06-153 | 19th October 2006
Michael Bauland, Thomas Schneider, Henning Schnoor, Ilka Schnoor, Heribert Vollmer

The Complexity of Generalized Satisfiability for Linear Temporal Logic

Revisions: 1


In a seminal paper from 1985, Sistla and Clarke showed
that satisfiability for Linear Temporal Logic (LTL) is either
NP-complete or PSPACE-complete, depending on the set of temporal
operators used

If, in contrast, the set of propositional operators is restricted, the
complexity may ... more >>>


TR05-024 | 8th February 2005
Michael Bauland, Elmar Böhler, Nadia Creignou, Steffen Reith, Henning Schnoor, Heribert Vollmer

Quantified Constraints: The Complexity of Decision and Counting for Bounded Alternation

We consider constraint satisfaction problems parameterized by the set of allowed constraint predicates. We examine the complexity of quantified constraint satisfaction problems with a bounded number of quantifier alternations and the complexity of the associated counting problems. We obtain classification results that completely solve the Boolean case, and we show ... more >>>


TR04-100 | 23rd November 2004
Eric Allender, Michael Bauland, Neil Immerman, Henning Schnoor, Heribert Vollmer

The Complexity of Satisfiability Problems: Refining Schaefer's Theorem

Revisions: 1

Schaefer proved in 1978 that the Boolean constraint satisfaction problem for a given constraint language is either in P or is NP-complete, and identified all tractable cases. Schaefer's dichotomy theorem actually shows that there are at most two constraint satisfaction problems, up to polynomial-time isomorphism (and these isomorphism types are ... more >>>


TR03-018 | 28th March 2003
Matthias Galota, Heribert Vollmer

Functions Computable in Polynomial Space

We show that the class of integer-valued functions computable by
polynomial-space Turing machines is exactly the class of functions f
for which there is a nondeterministic polynomial-time Turing
machine with a certain order on its paths that on input x outputs a 3x3
matrix with entries from {-1,0,1} on each ... more >>>


TR02-056 | 19th September 2002
Todd Ebert, Wolfgang Merkle, Heribert Vollmer

On the Autoreducibility of Random Sequences

A binary sequence A=A(0)A(1).... is called i.o. Turing-autoreducible if A is reducible to itself via an oracle Turing machine that never queries its oracle at the current input, outputs either A(x) or a don't-know symbol on any given input x, and outputs A(x) for infinitely many x. If in addition ... more >>>


TR98-057 | 10th September 1998
Manindra Agrawal, Eric Allender, Samir Datta, Heribert Vollmer, Klaus W. Wagner

Characterizing Small Depth and Small Space Classes by Operators of Higher Types

Motivated by the question of how to define an analog of interactive
proofs in the setting of logarithmic time- and space-bounded
computation, we study complexity classes defined in terms of
operators quantifying over oracles. We obtain new
characterizations of $\NCe$, $\L$, $\NL$, $\NP$, ... more >>>


TR98-022 | 14th April 1998
Steffen Reith, Heribert Vollmer

The Complexity of Computing Optimal Assignments of Generalized Propositional Formulae

We consider the problems of finding the lexicographically
minimal (or maximal) satisfying assignment of propositional
formulae for different restricted formula classes. It turns
out that for each class from our framework, the above problem
is either polynomial time solvable or complete for ... more >>>


TR96-035 | 27th March 1996
Ronald V. Book, Heribert Vollmer, Klaus W. Wagner

Probabilistic Type-2 Operators and ``Almost''-Classes


We define and examine several probabilistic operators ranging over sets
(i.e., operators of type 2), among them the formerly studied
ALMOST-operator. We compare their power and prove that they all coincide
for a wide variety of classes. As a consequence, we characterize the
ALMOST-operator which ranges over infinite objects ... more >>>


TR96-005 | 9th January 1996
Hans-Joerg Burtschick, Heribert Vollmer

Lindstroem Quantifiers and Leaf Language Definability

Revisions: 1


We show that examinations of the expressive power of logical formulae
enriched by Lindstroem quantifiers over ordered finite structures
have a well-studied complexity-theoretic counterpart: the leaf
language approach to define complexity classes. Model classes of
formulae with Lindstroem quantifiers are nothing else than leaf
language definable sets. Along the ... more >>>




ISSN 1433-8092 | Imprint