We show that degree-$d$ block-symmetric polynomials in
$n$ variables modulo any odd $p$ correlate with parity
exponentially better than degree-$d$ symmetric
polynomials, if $n \ge c d^2 \log d$ and $d \in [0.995
\cdot p^t - 1,p^t)$ for some $t \ge 1$. For these
infinitely many degrees, our result ...
more >>>
We report on some initial results of a brute-force search for determining the maximum correlation between degree-$d$ polynomials modulo $p$ and the $n$-bit mod $q$ function. For various settings of the parameters $n,d,p,$ and $q$, our results indicate that symmetric polynomials yield the maximum correlation. This contrasts with the previously-analyzed ... more >>>