Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > AUTHORS > KUNAL TALWAR:
All reports by Author Kunal Talwar:

TR15-131 | 10th August 2015
Parikshit Gopalan, Noam Nisan, Rocco Servedio, Kunal Talwar, Avi Wigderson

Smooth Boolean functions are easy: efficient algorithms for low-sensitivity functions

A natural measure of smoothness of a Boolean function is its sensitivity (the largest number of Hamming neighbors of a point which differ from it in function value). The structure of smooth or equivalently low-sensitivity functions is still a mystery. A well-known conjecture states that every such Boolean function can ... more >>>


TR11-106 | 6th August 2011
Andrew McGregor, Ilya Mironov, Toniann Pitassi, Omer Reingold, Kunal Talwar, Salil Vadhan

The Limits of Two-Party Differential Privacy

We study differential privacy in a distributed setting where two parties would like to perform analysis of their joint data while preserving privacy for both datasets. Our results imply almost tight lower bounds on the accuracy of such data analyses, both for specific natural functions (such as Hamming distance) and ... more >>>


TR07-113 | 15th November 2007
Matthew Andrews, Julia Chuzhoy, Venkatesan Guruswami, Sanjeev Khanna, Kunal Talwar, Lisa Zhang

Inapproximability of edge-disjoint paths and low congestion routing on undirected graphs

In the undirected Edge-Disjoint Paths problem with Congestion
(EDPwC), we are given an undirected graph with $V$ nodes, a set of
terminal pairs and an integer $c$. The objective is to route as many
terminal pairs as possible, subject to the constraint that at most
$c$ demands can be routed ... more >>>


TR06-141 | 22nd November 2006
Venkatesan Guruswami, Kunal Talwar

Hardness of Low Congestion Routing in Directed Graphs

We prove a strong inapproximability result for routing on directed
graphs with low congestion. Given as input a directed graph on $N$
vertices and a set of source-destination pairs that can be connected
via edge-disjoint paths, we prove that it is hard, assuming NP
doesn't have $n^{O(\log\log n)}$ time randomized ... more >>>




ISSN 1433-8092 | Imprint